Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

A Novel Machine Learning-based Predictive Model of Clinically Significant Prostate Cancer and Online Risk Calculator

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Objective: To create a machine-learning predictive model combining prostate imaging-reporting and data system (PI-RADS) score, PSA density, and clinical variables to predict clinically significant prostate cancer (csPCa). Methods: We evaluated a cohort of patients who underwent prostate biopsy for suspected prostate cancer (PCa) in New Zealand, Australia, and Switzerland. We collected data on age, body mass index (BMI), PSA level, prostate volume, PSA density (PSAD), PI-RADS scores, previous biopsy, and corresponding histology results. The dataset was divided into derivation (training) and validation (test) sets using random splits. An independent dataset was obtained from the Harvard Dataverse for external validation. A cohort of 1272 patients was analyzed. We fitted a Lasso model, XGBoost, and LightGBM to the training set and assessed their accuracy. Results: All models demonstrated ROC-AUC values ranging from 0.830 to 0.851. LightGBM was considered the superior model, with an ROC of 0.851 (95%CI: 0.804-0.897) in the test set and 0.818 (95% CI: 0.798-0.831) in the external dataset. The most important variable was PI-RADS, followed by PSA density, history of previous biopsy, age, and BMI. Conclusion: We developed a predictive model for detecting csPCa that exhibited a high ROC-AUC value for internal and external validations. This suggests that the integration of the clinical parameters outperformed each individual predictor. Additionally, the model demonstrated good calibration metrics, indicative of a more balanced model than the existing models.

Descrição

Palavras-chave

Idioma

Inglês

Citação

Urology, v. 196, p. 20-26.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso