Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Opposition-Based Jellyfish Search for Feature Selection

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Jellyfish Search (JS) is a recently proposed meta-heuristic optimization algorithm that simulates the behavior of jellyfish searching for food in ocean currents. However, JS suffers from problems related to population diversity in the search space and low convergence rate. This work proposes a new algorithm called opposition-Based Jellyfish Search (OJS), which uses opposition-Based Learning to increase search space coverage and the balance between exploration and exploitation. The OJS is validated against large-scale benchmark optimization functions from the CEC'2013 competition and also against feature selection from six datasets related to fault identification in power transformers. The experimental results demonstrated an increase in the OJS convergence rate concerning the original JS version and a performance improvement, obtaining lower fitness values in the large-scale benchmark optimization functions. Concerning feature selection, OJS obtained better accuracies than JS, demonstrating its viability for identifying faults in power transformers.

Descrição

Palavras-chave

Machine Learning, Metaheuristic, opposition-Based Learning, Optimization

Idioma

Inglês

Citação

International Conference on Systems, Signals, and Image Processing, v. 2023-June.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso