Logotipo do repositório
 

Publicação:
Deposition and photo-induced electrical resistivity of dip-coated NiO thin films from a precipitation process

dc.contributor.authorDa Silva, Marcelo R. [UNESP]
dc.contributor.authorScalvi, Luis Vicente de Andrade [UNESP]
dc.contributor.authorDall'Antonia, Luiz H.
dc.contributor.authorDos Santos, Dayse I. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Londrina (UEL)
dc.date.accessioned2014-05-27T11:29:34Z
dc.date.available2014-05-27T11:29:34Z
dc.date.issued2013-06-01
dc.description.abstractThin films of the semiconductor NiO are deposited using a straightforward combination of simple and versatile techniques: the co-precipitation in aqueous media along with the dip- coating process. The obtained material is characterized by gravimetric/differential thermal analysis (TG-DTA) and X-ray diffraction technique. TG curve shows 30 % of total mass loss, whereas DTA indicates the formation of the NiO phase about 578 K (305 C). X-ray diffraction (XRD) data confirms the FCC crystalline phase of NiO, whose crystallinity increases with thermal annealing temperature. UV-Vis optical absorption measurements are carried out for films deposited on quartz substrate in order to avoid the masking of bandgap evaluation by substrate spectra overlapping. The evaluated bandgap is about 3.0 eV. Current-voltage (I-V) curves measured for different temperatures as well as the temperature-dependent resistivity data show typical semiconductor behavior with the resistivity increasing with the decreasing of temperature. The Arrhenius plot reveals a level 233 meV above the conduction band top, which was attributed to Ni2+ vacancy level, responsible for the p-type electrical nature of NiO, even in undoped samples. Light irradiation on the films leads to a remarkable behavior, because above bandgap light induced a resistivity increase, despite the electron-hole generation. This performance was associated with excitation of the Ni 2+ vacancy level, due to the proximity between energy levels. © 2012 Springer Science+Business Media New York.en
dc.description.affiliationEngineering College CTI São Paulo State University UNESP, Bauru, SP
dc.description.affiliationPOSMAT Programa de Pós Graduação em Ciência e Tecnologia de Materiais São Paulo State University UNESP, Bauru
dc.description.affiliationDepartment of Physics FC São Paulo State University UNESP, Bauru, SP
dc.description.affiliationInstitute of Meteorological Research São Paulo State University UNESP, Bauru, SP
dc.description.affiliationUEL Department of Chemistry State University of Londrina, Londrina, PR
dc.description.affiliationUnespEngineering College CTI São Paulo State University UNESP, Bauru, SP
dc.description.affiliationUnespPOSMAT Programa de Pós Graduação em Ciência e Tecnologia de Materiais São Paulo State University UNESP, Bauru
dc.description.affiliationUnespDepartment of Physics FC São Paulo State University UNESP, Bauru, SP
dc.description.affiliationUnespInstitute of Meteorological Research São Paulo State University UNESP, Bauru, SP
dc.format.extent1823-1831
dc.identifierhttp://dx.doi.org/10.1007/s10854-012-1019-8
dc.identifier.citationJournal of Materials Science: Materials in Electronics, v. 24, n. 6, p. 1823-1831, 2013.
dc.identifier.doi10.1007/s10854-012-1019-8
dc.identifier.issn0957-4522
dc.identifier.issn1573-482X
dc.identifier.lattes7730719476451232
dc.identifier.orcid0000-0001-5762-6424
dc.identifier.scopus2-s2.0-84878687225
dc.identifier.urihttp://hdl.handle.net/11449/75483
dc.identifier.wosWOS:000319354100015
dc.language.isoeng
dc.relation.ispartofJournal of Materials Science: Materials in Electronics
dc.relation.ispartofjcr2.324
dc.relation.ispartofsjr0,503
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectCurrent voltage curve
dc.subjectElectrical resistivity
dc.subjectElectron-hole generation
dc.subjectPrecipitation process
dc.subjectSemiconductor behavior
dc.subjectTemperature-dependent resistivity
dc.subjectUV-vis optical absorption
dc.subjectX-ray diffraction techniques
dc.subjectArrhenius plots
dc.subjectDeposits
dc.subjectElectric conductivity
dc.subjectEnergy gap
dc.subjectNickel
dc.subjectPrecipitation (chemical)
dc.subjectQuartz
dc.subjectThermoanalysis
dc.subjectThin films
dc.subjectX ray diffraction
dc.subjectVapor deposition
dc.titleDeposition and photo-induced electrical resistivity of dip-coated NiO thin films from a precipitation processen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights
dspace.entity.typePublication
unesp.author.lattes7730719476451232[2]
unesp.author.orcid0000-0002-9280-4334[4]
unesp.author.orcid0000-0003-1883-0363[3]
unesp.author.orcid0000-0001-5762-6424[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentFísica - FCpt

Arquivos