Logotipo do repositório
 

Publicação:
DEEP REGRESSOR NETWORKS FOR BLIND IMAGE DEBLURRING

dc.contributor.authorPires, Rafael G. [UNESP]
dc.contributor.authorSantos, Daniel F.S. [UNESP]
dc.contributor.authorPassos, Leandro A. [UNESP]
dc.contributor.authorPapa, João P. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-03-02T00:29:18Z
dc.date.available2023-03-02T00:29:18Z
dc.date.issued2021-01-01
dc.description.abstractImage restoration concerns mainly smoothing noise and deblurring images that were corrupted either during acquisition or transmission. Since traditional deconvolution filters are highly dependent on specific kernels or prior knowledge to guide the deblurring process, image blur classification and further parameter estimation are critical for blind image deblurring. This paper tackles the problem in three steps: (i) it first identifies the blur type for each input image, (ii) then it estimates the respective kernel parameter, and (iii) finally, it uses deconvolution filters to restore the blurred image. The proposed approach, called Deep Regressor Networks, showed promising results in general-purpose and remote sensing image datasets corrupted by different types and blur levels than some state-of-the-art techniques.en
dc.description.affiliationSão Paulo State University UNESP Department of Computing, SP
dc.description.affiliationUnespSão Paulo State University UNESP Department of Computing, SP
dc.format.extent5390-5393
dc.identifierhttp://dx.doi.org/10.1109/IGARSS47720.2021.9554775
dc.identifier.citationInternational Geoscience and Remote Sensing Symposium (IGARSS), p. 5390-5393.
dc.identifier.doi10.1109/IGARSS47720.2021.9554775
dc.identifier.scopus2-s2.0-85129799686
dc.identifier.urihttp://hdl.handle.net/11449/241822
dc.language.isoeng
dc.relation.ispartofInternational Geoscience and Remote Sensing Symposium (IGARSS)
dc.sourceScopus
dc.subjectBlind Deconvolution
dc.subjectDeep learning
dc.subjectImage Restoration
dc.subjectRemote sensing
dc.titleDEEP REGRESSOR NETWORKS FOR BLIND IMAGE DEBLURRINGen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos