Logotipo do repositório
 

Publicação:
Novo comportamento crítico da singularidade de Yang-Lee

Carregando...
Imagem de Miniatura

Orientador

Dalmazi, Denis

Coorientador

Pós-graduação

Física - FEG

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Tese de doutorado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

No limite termodinâmico, os zeros da função de partição de modelos magnéticos de spins em muitos casos formam curvas contínuas no plano complexo de u, onde u=eH/KT, com H sendo o campo magnético externo. Quando a temperatura do sistema for maior que uma temperatura crítica (T>Tcr), os zeros ui da função de partição, tenderão a se acumular nas extremidades uE de tais curvas. A densidade llinear de zeros diverge com uma lei de potência p(u) ~{u-uE}, onde o expoente define uma classe de universalidade que depende somente da dimensão do espaço. O ponto crític u=uE é conhecido com singularidade de Yang-Lee. para modelos unidimensionais em geral o= -1/2 quando a matriz de transferência apresentar tripla degenerescência de seus auto valores (condição necessária, mas não suficiente), a densidade dos zeros p poderá divergi com o =-2/3. Neste trabalho, nós prevemos analiticamente a existência desse novo comportamento crítico para o modelo de Ising de spin 1/2 com interações de segundo vizinhos (modelo ANNNI) e para o modelo de Blume-Emery-Griffiths e confirmamos numericamente esse fato através de calculo numérico dos zeros com alta precisão. Verificamos a existência do novo comportamento crítico para os zeros no plano complexo de outros acoplamentos da hamiltoniana além do campo magnético. Encontramos também o- -2/3 para os modelos de spins multidimensionais sobre anéis conexos e desconexos. Especulamos que uma versão tricrítica da singularidade de Yang-Lee possa estar por trás de um resultado anômalo para o expoente o obtido na literatura a partir de medições da magnetização a baixa temperatura no FeCl2

Resumo (inglês)

The partition function zeros of magnetic spin models usually form continuos curves on the complex u-plane above the critical temperatur (T>Ter), where u= eH/Kt and H is the exeternal magnetic field. The zeros ui, tend to accumulate at the edges of the zeros curves. The linear density at the edges diverges as a power law [u-uE], where the exponent o defines a universality class, wich depends only on the space dimension. For the one-dimensional models o= -1/2, but when we have the triple degeneracy of the transfer matriz eigenvalues (necessary but not sufficient condition), the linear density can diverge with 0= -2/3. In this work, we analytically predict the new critical behavior for the spin 1/2 ANNNI (axial-nest-to nearest-neighbor-Ising) model and Blume-Emery-Griffiths model and we numerically confirm the existence of the new dritical behavior with o=-2/3. In order to reinforce the exixtence of the new universality class, we verify the new critical behavior on the complex magnetic field plane and on the complex plane of other couplings in the Hamiltonian. We have found the new behavior o =-2/3 also for spin models in a connected and non-connected rings. We speculate that the tricritical version of the Yang-Lee edge singularity might explain some anomalous experimental result for the exponent o obtained in the literatur from magnetisation data at low temperatures in the FeCl2

Descrição

Palavras-chave

Teoria quântica de campos, Física estatística, Statistical physics

Idioma

Português

Como citar

SÁ, Fernanda Lopes. Novo comportamento crítico da singularidade de Yang-Lee. 2011. 108 f. Tese (doutorado) - Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá, 2011.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação