Publicação: PEDOT:PSS self-assembled films to methanol crossover reduction in Nafion (R) membranes
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
Alternative energy sources are on a global demand, with fuel cells as promising devices from mobile to stationary applications. Nafion (R) is at the heart of many of these appliances, being mostly used due to its high proton conduction and good chemical stability at ambient temperature in proton exchange membranes (PEM). Therefore, methanol permeation throughout Nafion (R) films reduces drastically the performance of direct methanol fuel cells (DMFC). We present here the deposition of layer-by-layer (LbL) nanostructured thin films of poly(allylamine hydrochloride) (PAH) and poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT:PSS) onto commercial Nafion (R) 212 membranes. It was observed a good adherence of the LbL films onto Nafion (R) 212, with UV-vis results displaying a linear characteristic growth, indicative that the same amount of material was deposited at each deposition step during the layer-by-layer assembly. In addition, the LbL films also act as a good barrier to avoid methanol crossover, with an observed reduction in the methanol permeation from 5.5 x 10(-6) cm(2) s(-1) to 3.2 x 10(-6) cm(2) s(-1), respectively to pristine Nafion (R) 212 and a 5-bilayer PAH/PEDOT:PSS LbL film deposited on Nafion (R) 212. The measured power density in a DMFC set-up was not significantly changed (similar to 12 mW cm(-2)) due to the LbL films, since the PAH/PEDOT:PSS nanostructure is impeding water and ion transport, consequently affecting the proton conduction throughout the membrane. (C) 2014 Elsevier B.V. All rights reserved.
Descrição
Palavras-chave
Direct methanol fuel cell, Crossover, Layer-by-layer, PEDOT:PSS
Idioma
Inglês
Como citar
Applied Surface Science. Amsterdam: Elsevier Science Bv, v. 323, p. 7-12, 2014.