Logotipo do repositório
 

Publicação:
Teoria de funções elípticas e aplicações em soluções de sistemas periódicos em mecânica

Carregando...
Imagem de Miniatura

Orientador

Callegari Junior, Nelson

Coorientador

Pós-graduação

Matemática - IGCE

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Dissertação de mestrado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

É bem conhecido que em Mecânica Analítica muitos problemas integráveis não tem primitivas escritas em forma de funções elementares, tais como: corpo rígido assimétrico em rotação livre; pêndulo esférico, entre outros. O uso de funções elípticas faz-se necessário para se buscar soluções analíticas desses problemas. Neste trabalho, faremos primeiramente uma revisão da teoria dessas funções adotando como referência alguns textos clássicos. Feito isso, estudaremos a formulação de problemas de dinâmica, a saber o pêndulo simples e o pião simétrico. Por fim, com as integrais desses problemas em mãos, iremos determinar suas soluções com o uso das funções elípticas de Jacobi e Weierstrass.

Resumo (inglês)

It is well known that in Analytical Mechanics many simple integrable problems cannot be written in terms of elementary functions, such as: rigid asymmetrical body in free rotation, spherical pendulum, among others. The use of elliptic functions becomes necessary in order to obtain analytical solutions of these problems. In this work, we present a review of the theory of these functions accordingly to some classical texts. In the sequence, we study two problems of mechanics: the simple pendulum and the symmetrical top. Finally, we will determine the solutions to these problems using of the Jacobi and Weierstrass elliptic functions.

Descrição

Palavras-chave

Integrais elípticas, Funções elípticas, Mecânica analítica, Elliptic integrals, Elliptic functions, Analytical mechanics

Idioma

Português

Como citar

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação