Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm
Author
Date
2018-01-01Type
View/ Open
Access rights

Metadata
Show full item recordAbstract
For disease monitoring, grade definition and treatments orientation, specialists analyze tissue samples to identify structures of different types of cancer. However, manual analysis is a complex task due to its subjectivity. To help specialists in the identification of regions of interest, segmentation methods are used on histological images obtained by the digitization of tissue samples. Besides, features extracted from these specific regions allow for more objective diagnoses by using classification techniques. In this paper, fitness functions are analyzed for unsupervised segmentation and classification of chronic lymphocytic leukemia and follicular lymphoma images by the identification of their neoplastic cellular nuclei through the genetic algorithm. Qualitative and quantitative analyses allowed the definition of the Renyi entropy as the most adequate for this application. Images classification has reached results of 98.14% through accuracy metric by using this fitness function.
How to cite this document
Keywords
Language
Sponsor
Grant number
