Show simple item record

dc.contributor.authorCarvalho, Tiago [UNESP]
dc.contributor.authorEuźebio, Rodrigo D.
dc.contributor.authorTeixeira, Marco Antonto
dc.contributor.authorTonon, Durval Jośe
dc.date.accessioned2018-12-11T16:48:04Z
dc.date.available2018-12-11T16:48:04Z
dc.date.issued2017-01-01
dc.identifierhttp://dx.doi.org/10.1093/imamat/hxx003
dc.identifier.citationIMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), v. 82, n. 3, p. 561-578, 2017.
dc.identifier.issn1464-3634
dc.identifier.issn0272-4960
dc.identifier.urihttp://hdl.handle.net/11449/169891
dc.description.abstractWe consider a piecewise smooth vector field in R3, where the switching set is on an algebraic variety expressed as the zero of a Morse function.We depart from a model described by piecewise constant vector fields with a non-usual center that is constant on the sliding region. Given a positive integer k, we produce suitable nonlinear small perturbations of the previous model and we obtain piecewise smooth vector fields having exactly k hyperbolic limit cycles instead of the center. Moreover, we also obtain suitable nonlinear small perturbations of the first model and piecewise smooth vector fields having a unique limit cycle of multiplicity k instead of the center. As consequence, the initial model has codimension infinity. Some aspects of asymptotical stability of such system are also addressed in this article.en
dc.description.sponsorshipUniversidade Federal de Goiás
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.format.extent561-578
dc.language.isoeng
dc.relation.ispartofIMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications)
dc.sourceScopus
dc.subjectBifurcation
dc.subjectLimit cycles
dc.subjectPeriodic solutions
dc.subjectPiecewise smooth vector fields
dc.titleBirth of limit cycles from a 3D triangular center of a piecewise smooth vector fielden
dc.typeArtigo
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionCEP 74001-970
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.description.affiliationDepartamento de Mateḿatica Faculdade de Ciências UNESP, Av. Eng. Luiz Edmundo Carrijo Coube 14-01
dc.description.affiliationDepartamento de Mateḿatica Universidade Federal de Goías IME CEP 74001-970, Caixa Postal 131
dc.description.affiliationDepartamento de Mateḿatica IMECC-UNICAMP CEP 13083-970
dc.description.affiliationUnespDepartamento de Mateḿatica Faculdade de Ciências UNESP, Av. Eng. Luiz Edmundo Carrijo Coube 14-01
dc.identifier.doi10.1093/imamat/hxx003
dc.rights.accessRightsAcesso aberto
dc.description.sponsorshipIdUniversidade Federal de Goiás: 040393
dc.description.sponsorshipIdUniversidade Federal de Goiás: 35796
dc.description.sponsorshipIdUniversidade Federal de Goiás: 35798
dc.description.sponsorshipIdCAPES: 88881.030454/2013-01
dc.identifier.scopus2-s2.0-85021814172
dc.identifier.file2-s2.0-85021814172.pdf
dc.relation.ispartofsjr0,679
dc.relation.ispartofsjr0,679
Localize o texto completo

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record