Logo do repositório
 

Building networks for image segmentation using particle competition and cooperation

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Particle competition and cooperation (PCC) is a graph-based semi-supervised learning approach. When PCC is applied to interactive image segmentation tasks, pixels are converted into network nodes, and each node is connected to its k-nearest neighbors, according to the distance between a set of features extracted from the image. Building a proper network to feed PCC is crucial to achieve good segmentation results. However, some features may be more important than others to identify the segments, depending on the characteristics of the image to be segmented. In this paper, an index to evaluate candidate networks is proposed. Thus, building the network becomes a problem of optimizing some feature weights based on the proposed index. Computer simulations are performed on some real-world images from the Microsoft GrabCut database, and the segmentation results related in this paper show the effectiveness of the proposed method.

Descrição

Palavras-chave

Complex networks, Image segmentation, Particle competition and cooperation

Idioma

Inglês

Citação

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10404, p. 217-231.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação