Existence of bounded variation solutions for a 1-Laplacian problem with vanishing potentials
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso restrito
Arquivos
Fontes externas
Fontes externas
Resumo
In this work it is studied a quasilinear elliptic problem in the whole space RN involving the 1-Laplacian operator, with potentials which can vanish at infinity. The Euler–Lagrange functional is defined in a space whose definition resembles BV(RN). It is proved the existence of a nonnegative nontrivial bounded variation solution and the proof relies on a version of the Mountain Pass Theorem without the Palais–Smale condition to Lipschitz continuous functionals.
Descrição
Palavras-chave
1-Laplacian, Bounded variation functions, Mountain pass theorem
Idioma
Inglês
Citação
Journal of Mathematical Analysis and Applications, v. 459, n. 2, p. 861-878, 2018.




