Multilayer Perceptron Models for Band Diagram Prediction in bi-dimensional Photonic Crystals
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso restrito
Resumo
We modeled Multilayer Perceptron (MLP) Artificial Neural Network for predicting band diagrams (BD) of bi-dimensional photonic crystals. Datasets for MLP training were created by relating geometric and material properties to BDs of triangular-and square-lattice photonic crystals. We demonstrate that fast-Training MLP models are able to estimate accurate BDs and existing photonic band gaps through rapid computations.
Descrição
Palavras-chave
multilayer perceptron, photonic band gap, photonic crystal, prediction
Idioma
Inglês
Citação
2018 SBFoton International Optics and Photonics Conference, SBFoton IOPC 2018.