Multi-energy calibration for the determination of non-metals by high-resolution continuum source molecular absorption spectrometry
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso restrito
Arquivos
Fontes externas
Fontes externas
Resumo
Spectra of diatomic molecules are rich in fine structures which may be used for different analytical applications in high-resolution continuum source molecular absorption spectrometry (HR-CS MAS). If several bands of a given diatomic molecule are simultaneously measured, they may be used in multi-energy calibration (MEC), a method based on the use of several wavelengths of the same absorbing/emitting entity to improve the accuracy in analytical atomic spectrometry. In this work, MEC is used for the first time as a calibration method for HR-CS MAS using flame (F) and graphite furnace (GF) atomizers. Methods were developed and applied for the determination of N, P and S in fertilizers by HR-CS F MAS and Cl in milk by HR-CS GF MAS. Chlorine, N, P and S were measured via CaCl (10 band heads), NO (13 band heads), PO (13 band heads) and CS (14 band heads), respectively. No statistically significant differences were observed between Cl, N, P and S concentrations determined by MEC and by the conventional external standard calibration (paired t-test at a 95% confidence level, n = 3). Recoveries were in the 97-109% (Cl), 97-103% (P), 99-109% (S) and 98-99% (N) intervals, and the relative standard deviations (n = 12) for Cl, N, P, and S were typically 6%, 3%, 2% and 2%, respectively.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Journal of Analytical Atomic Spectrometry, v. 34, n. 5, p. 972-978, 2019.




