Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Influence of ceramic material, thickness of restoration and cement layer on stress distribution of occlusal veneers

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

The aim of this study was to evaluate stress distribution in an occlusal veneer according to the restorative material, restoration thickness, and cement layer thickness. A tridimensional model of a human maxillary first molar with an occlusal veneer preparation was constructed using a modeling software of finite element analysis. The model was replicated 9 times to evaluate the factors: restoration thickness (0.6, 1.2, and 1.8 mm) and cement layer thickness (100, 200, and 300 μm). Then, each model received different restorative materials (High Translucency Zirconia - [YZHT], Lithium Disilicate - [LD], Zirconia Reinforced Lithium Silicate - [ZLS], Feldspathic - [F], and Hybrid Ceramic - [HC]), totaling forty-five groups. An axial load (600 N) was applied on the occlusal face for static structural analysis. Solids were considered isotropic, homogeneous, and linearly elastic. Contacts were considered perfectly bonded. Fixation occurred in the dental root and a mechanical static structural analysis was performed. Descriptive statistical analysis and one-way ANOVA (α =10%) were performed for tensile stress peak values in the restoration and cement layer. The difference between groups was compared using the Tukey's test with 10% significance to match the percentage of the mesh convergence test. According to the results, the cement layer thickness did not influence stress distribution in the restoration (p ≥ 0.10). The thicker the restoration, the higher the tensile stress concentration in the restoration. The graphs showed higher stress concentration in the YZHT, followed by LD, F, ZLS, and HC. Also, the restorative material influenced stress concentration on the cement layer, which decreased according to the sequence HC>YZHT>ZLS>LD>F. HC stood out for causing the least stress concentration in the restoration. Cement layer thickness did not interfere in the mechanical performance of the restorations.

Descrição

Palavras-chave

Idioma

Inglês

Citação

Brazilian oral research, v. 32, p. e118-.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso