Publicação: Duality for systems of conservation laws
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
For one-dimensional systems of conservation laws admitting two additional conservation laws, we assign a ruled hypersurface of codimension two in projective space. We call two such systems dual if the corresponding ruled hypersurfaces are dual. We show that a Hamiltonian system is auto-dual, its ruled hypersurface sits in some quadric, and the generators of this ruled hypersurface form a Legendre submanifold with respect to the contact structure on Fano variety of this quadric. We also give a complete geometric description of 3-component nondiagonalizable systems of Temple class: such systems admit two additional conservation laws, they are dual to systems with constant characteristic speeds, constructed via maximal rank 3-webs of curves in space.
Descrição
Palavras-chave
Congruences of lines, Conservation laws, Ruled hypersurface
Idioma
Inglês
Como citar
Letters in Mathematical Physics, v. 110, n. 6, p. 1123-1139, 2020.