Using association rule mining to jointly detect clinical features and differentially expressed genes related to chronic inflammatory diseases
Abstract
Objective It is increasingly common to find patients affected by a combination of type 2 diabetes mellitus (T2DM), dyslipidemia (DLP) and periodontitis (PD), which are chronic inflammatory diseases. More studies able to capture unknown relationships among these diseases will contribute to raise biological and clinical evidence. The aim of this study was to apply association rule mining (ARM) to discover whether there are consistent patterns of clinical features (CFs) and differentially expressed genes (DEGs) relevant to these diseases. We intend to reinforce the evidence of the T2DM-DLP-PD-interplay and demonstrate the ARM ability to provide new insights into multivariate pattern discovery. Methods We utilized 29 clinical glycemic, lipid and periodontal parameters from 143 patients divided into five groups based upon diabetic, dyslipidemic and periodontal conditions (including a healthy-control group). At least 5 patients from each group were selected to assess the transcriptome by microarray. ARM was utilized to assess relevant association rules considering: (i) only CFs; and (ii) CFs+DEGs, such that the identified DEGs, specific to each group of patients, were submitted to gene expression validation by quantitative polymerase chain reaction (qPCR). Results We obtained 78 CF-rules and 161 CF+DEG-rules. Based on their clinical significance, Periodontists and Geneticist experts selected 11 CF-rules, and 5 CF+DEG-rules. From the five DEGs prospected by the rules, four of them were validated by qPCR as significantly different from the control group; and two of them validated the previous microarray findings. Conclusions ARM was a powerful data analysis technique to identify multivariate patterns involving clinical and molecular profiles of patients affected by specific pathological panels. ARM proved to be an effective mining approach to analyze gene expression with the advantage of including patient's CFs. A combination of CFs and DEGs might be employed in modeling the patient's chance to develop complex diseases, such as those studied here.
How to cite this document
Language

Related items
Showing items related by title, author, creator and subject.
-
Núcleos de Ensino da Unesp: artigos 2009
Pinho, Sheila Zambello de; Oliveira, José Brás Barreto de
; Gazola, Rodrigo José Cristiano
; Mazotti, Adriano César
; Molero, Camila Schimite
; Mendes, Carolina Borghi
; Mello, Denise Fernandes de
; Marques, Emilia de Mendonça Rosa
; Talamoni, Jandira Liria Biscalquini
; Silva, José Humberto Dias da
et al. (Coleção PROGRAD (UNESP), 2011) [Livro]
-
Núcleos de Ensino da Unesp: artigos 2008
Pinho, Sheila Zambello de; Oliveira, José Brás Barreto de
; Pontes, Sueli Rodrigues
; Almeida, Djanira Soares de Oliveira e
; Godoy, Kathya Maria Ayres de
; Rosa, Claudia de Souza
; Nunes, Julianus Araújo
; Salvador, Sérgio Azevedo
; David, Célia Maria
; Vilche Peña, Angel Fidel
et al. (Coleção PROGRAD (UNESP), 2011) [Livro]
-
Ser e tornar-se professor: práticas educativas no contexto escolar
Pinho, Sheila Zambello de; Spazziani, Maria de Lourdes
; Mendonça, Sueli Guadelupe de Lima
; Rubo, Elisabete Aparecida Andrello
; Villarreal, Dalva Maria de Oliveira
; Duarte, Camila
; Okamoto, Mary Yoko
; Souza, Thais R.
; Garms, Gilza Maria Zauhy
; Marin, Fátima Aparecida Dias Gomes
et al. (Coleção PROGRAD (UNESP), 2012) [Livro]