Publicação: Constructions of Dense Lattices of Full Diversity
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Sociedade Brasileira de Matemática Aplicada e Computacional
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
Resumo (inglês)
A lattice construction using ℤ-submodules of rings of integers of number fields is presented. The construction yields rotated versions of the laminated lattices Λn for n = 2, 3, 4, 5, 6, which are the densest lattices in their respective dimensions. The sphere packing density of a lattice is a function of its packing radius, which in turn can be directly calculated from the minimum squared Euclidean norm of the lattice. Norms in a lattice that is realized by a totally real number field can be calculated by the trace form of the field restricted to its ring of integers. Thus, in the present work, we also present the trace form of the maximal real subfield of a cyclotomic field. Our focus is on totally real number fields since their associated lattices have full diversity. Along with high packing density, the full diversity feature is desirable in lattices that are used for signal transmission over both Gaussian and Rayleigh fading channels.
Resumo (português)
Uma construção de reticulados usando ℤ submódulos de anéis de inteiros de corpos de números é apresentada. A construção produz versões rotacionadas dos reticulados laminados Λn para n = 2, 3, 4, 5, 6, que são os reticulados mais densos nessas dimensões. A densidade de empacotamento esférico de um reticulado é uma função do seu raio de empacotamento, o qual por sua vez pode ser diretamente calculado a partir da norma quadrada mÃnima do reticulado. Normas em um reticulado realizado por um corpo de números totalmente real podem ser calculadas pela forma traço do corpo restrita ao seu anel de inteiros. Portanto, no presente trabalho, apresentamos também a forma traço do subcorpo real maximal de um corpo ciclotômico. Nosso foco é em corpos de números totalmente reais pois os reticulados associados a eles possuem diversidade máxima. Juntamente com a densidade de empacotamento, a caracterÃstica de diversidade máxima é desejável em reticulados que são usados para transmissão de sinais que percorrem os canais gaussiano e de desvanecimento Rayleigh.
Descrição
Palavras-chave
sphere packings, algebraic lattices, number fields, cyclotomic fields, empacotamento de esferas, reticulados algébricos, corpos de números, corpos ciclotômicos
Idioma
Inglês
Como citar
TEMA (São Carlos). Sociedade Brasileira de Matemática Aplicada e Computacional, v. 21, n. 2, p. 299-311, 2020.