Show simple item record

dc.contributor.advisorCosta, Kelton Augusto Pontara da
dc.contributor.authorAndreossi, João Vitor
dc.date.accessioned2022-03-14T14:44:38Z
dc.date.available2022-03-14T14:44:38Z
dc.date.issued2022-03-04
dc.identifier.urihttp://hdl.handle.net/11449/217164
dc.description.abstractWith the exponential increase in digital services being offered in the last decades, a lot of people began to depend on services hosted on web servers, and this means that when the servers become unavailable, even for a few minutes, a whole supply chain can be affected and incur major economic losses. This makes DDoS attacks specially dangerous, as they are hard to detect and don’t need many resources to carry out. This project proposes a DDoS detection system based on information theoretic entropy anomaly detection. The connection data from dataset CIDDS-001 was divided in two minutes time windows and categorized via ensemble classifiers, if the time window entropy exceeds a predetermined interval. Finally, Explainable Artificial Intelligence techniques are applied as a way to better understand the model inner workings.en
dc.description.abstractCom o aumento exponencial de serviços ofertados digitalmente nas últimas décadas, muitas pessoas passaram a depender de serviços armazenados em servidores web, de maneira que a queda desses serviços, mesmo que por alguns minutos, pode afetar toda uma cadeia produtiva e gerar enormes prejuízos. Isso torna ataques do tipo DDoS especialmente perigosos, pois são difíceis de serem detectados e não necessitam de muitos recursos para serem executados. Esse trabalho propõe um sistema de detecção de ataques DDoS baseado na detecção de anomalias através do conceito de entropia da informação. As conexões do dataset CIDDS-001 foram separadas em janelas de tempo de dois minutos e categorizadas com o auxílio de modelos de classificação do tipo ensemble, caso a entropia da janela exceda o intervalo estabelecido. Por fim, foi realizada uma análise baseada em conceitos de Explainable Artificial Intelligence para entender melhor o funcionamento interno do modelo.pt
dc.description.sponsorshipNão recebi financiamento
dc.language.isopor
dc.publisherUniversidade Estadual Paulista (Unesp)
dc.subjectSistemas de segurançapt
dc.subjectAprendizado do computadorpt
dc.subjectEngenharia de softwarept
dc.subjectTeoria da informaçãopt
dc.titleAplicação das técnicas explainable artificial intelligence e ensemble learning para detecção de ataques DDoSpt
dc.title.alternativeApplying explainable artificial intelligence and ensemble learning techniques in DDoS detectionen
dc.typeTrabalho de conclusão de curso
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.rights.accessRightsAcesso aberto
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.undergraduateCiência da Computação - FCpt
Localize o texto completo

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record