Logotipo do repositório
 

Publicação:
APEHR: Automated prognosis in electronic health records using multi-head self-attention

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Automated prognosis has been a topic of intense research. Many works have sought to learn from Electronic Health Records using Recurrent Neural Networks that, despite promising results, have been overcome by novel techniques. We introduce APEHR, a Transformer approach that leverages medical prognosis using the latest technology Neural Network Transformer, which has demonstrated superior results in problems whose data is organized in sequential fashion. We contribute with an innovative problem modeling along with a detailed discussion of how Transformers can be used in the medical domain. Our results demonstrate a prognostic performance that surpasses previous works by at least 6% for metric Recall@k in the public dataset MIMIC-III.

Descrição

Palavras-chave

automated clinical prediction, clinical trajectory, deep learning, transformer

Idioma

Inglês

Como citar

Proceedings - IEEE Symposium on Computer-Based Medical Systems, v. 2021-June, p. 277-282.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação