Logotipo do repositório
 

Publicação:
Active semi-supervised learning using particle competition and cooperation in networks

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Both Active Learning and Semi-Supervised Learning are important techniques when labeled data are scarce and unlabeled data are abundant. In this paper, these two machine learning techniques are combined into a new nature-inspired method, which employs particles walking in networks generated from the data. It uses combined competitive and cooperative behavior in order to possess nodes of the network, and thus labeling the corresponding data items. Particles represent labeled nodes, and new particles can be added on the fly to the network as the result of queries (new labels). This built-in mechanism saves a lot of execution time comparing to active learning frameworks, since only nodes affected by the new particles are updated, i.e., the algorithm does not have to be executed again for each new query (or new set of queries). The algorithm naturally adapts itself to new scenarios, i.e., more particles and more labeled nodes. Experimental results on some real-world data sets are presented and the proposed active semi-supervised learning method shows better classification accuracy than its only semi-supervised learning counterpart when the same amount of labeled data is used. Some criteria for selecting the rule to be used to choose data items to be queried are also identified. © 2013 IEEE.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Proceedings of the International Joint Conference on Neural Networks.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação