Logotipo do repositório
 

Publicação:
Shadowing and structural stability for operators

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

A well-known result in the area of dynamical systems asserts that any invertible hyperbolic operator on any Banach space is structurally stable. This result was originally obtained by Hartman in 1960 for operators on finite-dimensional spaces. The general case was independently obtained by Palis and Pugh around 1968. We will exhibit a class of examples of structurally stable operators that are not hyperbolic, thereby showing that the converse of the above-mentioned result is false in general. We will also prove that an invertible operator on a Banach space is hyperbolic if and only if it is expansive and has the shadowing property. Moreover, we will show that if a structurally stable operator is expansive, then it must be uniformly expansive. Finally, we will characterize the weighted shifts on the spaces and (<![CDATA[1\leq p) that satisfy the shadowing property.

Descrição

Palavras-chave

37B99 (Secondary), 37C20, 37C50, 47A16 (Primary), expansivity, hyperbolicity, linear operators, shadowing, structural stability 2010 Mathematics Subject Classification

Idioma

Inglês

Como citar

Ergodic Theory and Dynamical Systems, v. 41, n. 4, p. 961-980, 2021.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação