Logotipo do repositório
 

Publicação:
Rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a Lipschitz deformation

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

World Scientific Publ Co Pte Ltd

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

We analyze the behavior of solutions of nonlinear elliptic equations with nonlinear boundary conditions of type partial derivative u/partial derivative n + g( x, u) = 0 when the boundary of the domain varies very rapidly. We show that the limit boundary condition is given by partial derivative u/partial derivative n+gamma(x) g(x, u) = 0, where gamma(x) is a factor related to the oscillations of the boundary at point x. For the case where we have a Lipschitz deformation of the boundary,. is a bounded function and we show the convergence of the solutions in H-1 and C-alpha norms and the convergence of the eigenvalues and eigenfunctions of the linearization around the solutions. If, moreover, a solution of the limit problem is hyperbolic, then we show that the perturbed equation has one and only one solution nearby.

Descrição

Palavras-chave

varying boundary, oscillations, nonlinear boundary conditions, elliptic equations

Idioma

Inglês

Como citar

Mathematical Models & Methods In Applied Sciences. Singapore: World Scientific Publ Co Pte Ltd, v. 17, n. 10, p. 1555-1585, 2007.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação