Signaling path of the action of AVP on distal K+ secretion

Carregando...
Imagem de Miniatura

Data

2004-08-01

Autores

Amorim, JBO
Musa-Aziz, R.
Mello-Aires, M.
Malnic, G.

Título da Revista

ISSN da Revista

Título de Volume

Editor

Blackwell Publishing

Resumo

Background. Previous studies from our laboratory have shown that luminal perfusion with arginine vasopressin (AVP) stimulates distal tubule secretory potassium flux (J(K)) via V1 receptors (Am J Physiol 278: F809- F816, 2000). In the present work, we investigate the cell signaling mechanism of this process.Methods. In vivo stationary microperfusion was performed in rat cortical distal tubules and luminal K was measured using double K+ resin/reference microelectrodes.Results. In control conditions, J(K) was 0.71 +/- 0.05 nmol. cm(-2).second(-1); this process was inhibited (14%) by 10(-5) mol/L 8-bromo-cyclic adenosine monophosphate (cAMP), and increased by 35% with 10(-8) mol/L phorbol ester [phorbol 12-myristate 13-acetate (PMA), which activates protein kinase C (PKC)]. During luminal perfusion with 10(-11) mol/L AVP, J(K) increased to 0.88 +/- 0.08 nmol. cm(-2).seconds(-1). In the presence of 10(-11) mol/L AVP, J(K) was not affected by 10(-4) mol/L H89, a blocker of protein kinase A (PKA), but was inhibited (45%) by 10(-5) mol/L staurosporine, an inhibitor of PKC, and by 41% during perfusion with 5 x 10(-5) mol/L of the cell Ca2+ chelator bis (2-aminophenoxy) ethane-tetraacetic acid (BAPTA). In order to study the role of Ca2+-dependent K channels in the luminal hormonal action, the tubules were perfused with 5 mmol/L tetraethylammonium chloride (TEA) or 10(-7) mol/L iberiotoxin, in the presence of AVP, and JK was significantly reduced by both agents. Iberiotoxin reduced AVP-stimulated J(K) by 36.4%, and AVP-independent J(K) (after blocking V1 receptors) by only 16%.Conclusion. The results suggest that the luminal V1-receptor effect of AVP on J(K) was mediated by the phospholipase C (PLC)/ Ca2+/PKC signaling path and not by adenylate cyclase/cAMP/PKA, therefore probably acting on maxi-potassium channels.

Descrição

Palavras-chave

potassium, distal tubule, PKC, maxi-potassium channels, cell signaling, cAMP, staurosporin

Como citar

Kidney International. Malden: Blackwell Publishing Inc., v. 66, n. 2, p. 696-704, 2004.