Multiplicity of Boardman strata and deformations of map germs
Carregando...
Fonte externa
Fonte externa
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Fonte externa
Fonte externa
Resumo
We define algebraically for each map germ f: Kn, 0→ Kp, 0 and for each Boardman symbol i = (il, . . ., ik) a number ci(f) which is script A sign-invariant. If f is finitely determined, this number is the generalization of the Milnor number of f when p = 1, the number of cusps of f when n = p = 2, or the number of cross caps when n = 2, p = 3. We study some properties of this number and prove that, in some particular cases, this number can be interpreted geometrically as the number of Σi points that appear in a generic deformation of f. In the last part, we compute this number in the case that the map germ is a projection and give some applications to catastrophe map germs.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Glasgow Mathematical Journal, v. 40, n. 1, p. 21-32, 1998.