Show simple item record

dc.contributor.authorBotta, Vanessa [UNESP]
dc.contributor.authorMeneguette Júnior, Messias [UNESP]
dc.contributor.authorCuminato, Jose A.
dc.contributor.authorMcKee, Sean
dc.date.accessioned2014-05-20T13:23:32Z
dc.date.available2014-05-20T13:23:32Z
dc.date.issued2012-01-15
dc.identifierhttp://dx.doi.org/10.1016/j.jmaa.2011.07.037
dc.identifier.citationJournal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B.V., v. 385, n. 2, p. 1151-1161, 2012.
dc.identifier.issn0022-247X
dc.identifier.urihttp://hdl.handle.net/11449/7114
dc.description.abstractThis paper presents an extension of the Enestrom-Kakeya theorem concerning the roots of a polynomial that arises from the analysis of the stability of Brown (K, L) methods. The generalization relates to relaxing one of the inequalities on the coefficients of the polynomial. Two results concerning the zeros of polynomials will be proved, one of them providing a partial answer to a conjecture by Meneguette (1994)[6]. (C) 2011 Elsevier B.V. All rights reserved.en
dc.format.extent1151-1161
dc.language.isoeng
dc.publisherAcademic Press Inc. Elsevier B.V.
dc.relation.ispartofJournal of Mathematical Analysis and Applications
dc.sourceWeb of Science
dc.subjectEnestrom-Kakeya theoremen
dc.subjectZeros of perturbed polynomialsen
dc.subjectStability of Brown (K, L) methodsen
dc.subjectJeltsch conjectureen
dc.titleOn the zeros of polynomials: An extension of the Enestrom-Kakeya theoremen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderAcademic Press Inc. Elsevier B.V.
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Strathclyde
dc.description.affiliationUniv São Paulo, Dept Matemat Aplicada & Estat, Inst Ciencias Matemat & Comp, BR-13560970 São Carlos, SP, Brazil
dc.description.affiliationUNESP Univ Estadual Paulista, Fac Ciencias & Tecnol, Dept Matemat Estat & Comp, BR-19060900 Presidente Prudente, SP, Brazil
dc.description.affiliationUniv Strathclyde, Dept Math & Stat, Glasgow G1 1XH, Lanark, Scotland
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Fac Ciencias & Tecnol, Dept Matemat Estat & Comp, BR-19060900 Presidente Prudente, SP, Brazil
dc.identifier.doi10.1016/j.jmaa.2011.07.037
dc.identifier.wosWOS:000295062600044
dc.rights.accessRightsAcesso restrito
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências e Tecnologia, Presidente Prudentept
dc.identifier.lattes1531018187057108
unesp.author.lattes1531018187057108
unesp.author.orcid0000-0002-5461-6463[3]
dc.relation.ispartofjcr1.138
Localize o texto completo

Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record