Logotipo do repositório
 

Publicação:
Analog neural nonderivative optimizers

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Institute of Electrical and Electronics Engineers (IEEE)

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

Continuous-time neural networks for solving convex nonlinear unconstrained;programming problems without using gradient information of the objective function are proposed and analyzed. Thus, the proposed networks are nonderivative optimizers. First, networks for optimizing objective functions of one variable are discussed. Then, an existing one-dimensional optimizer is analyzed, and a new line search optimizer is proposed. It is shown that the proposed optimizer network is robust in the sense that it has disturbance rejection property. The network can be implemented easily in hardware using standard circuit elements. The one-dimensional net is used as a building block in multidimensional networks for optimizing objective functions of several variables. The multidimensional nets implement a continuous version of the coordinate descent method.

Descrição

Palavras-chave

analog networks, coordinate descent, derivative free optimization, unconstrained optimization

Idioma

Inglês

Como citar

IEEE Transactions on Neural Networks. New York: IEEE-Inst Electrical Electronics Engineers Inc., v. 9, n. 4, p. 629-638, 1998.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação