Zeros of Jacobi functions of second kind
Carregando...
Data
2006-04-01
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
Artigo
Direito de acesso
Acesso aberto
Resumo
The number of zeros in (- 1, 1) of the Jacobi function of second kind Q(n)((alpha, beta)) (x), alpha, beta > - 1, i.e. The second solution of the differential equation(1 - x(2))y (x) + (beta - alpha - (alpha + beta + 2)x)y' (x) + n(n + alpha + beta + 1)y(x) = 0,is determined for every n is an element of N and for all values of the parameters alpha > - 1 and beta > - 1. It turns out that this number depends essentially on alpha and beta as well as on the specific normalization of the function Q(n)((alpha, beta)) (x). Interlacing properties of the zeros are also obtained. As a consequence of the main result, we determine the number of zeros of Laguerre's and Hermite's functions of second kind. (c) 2005 Elsevier B.V. All rights reserved.
Descrição
Idioma
Inglês
Como citar
Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 188, n. 1, p. 65-76, 2006.