Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Efficient parallelization on GPU of an image smoothing method based on a variational model

dc.contributor.authorGulo, Carlos A. S. J.
dc.contributor.authorde Arruda, Henrique F.
dc.contributor.authorde Araujo, Alex F.
dc.contributor.authorSementille, Antonio C. [UNESP]
dc.contributor.authorTavares, João Manuel R. S.
dc.contributor.institutionUniversidade do Porto
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T16:43:17Z
dc.date.available2018-12-11T16:43:17Z
dc.date.issued2016-07-21
dc.description.abstractMedical imaging is fundamental for improvements in diagnostic accuracy. However, noise frequently corrupts the images acquired, and this can lead to erroneous diagnoses. Fortunately, image preprocessing algorithms can enhance corrupted images, particularly in noise smoothing and removal. In the medical field, time is always a very critical factor, and so there is a need for implementations which are fast and, if possible, in real time. This study presents and discusses an implementation of a highly efficient algorithm for image noise smoothing based on general purpose computing on graphics processing units techniques. The use of these techniques facilitates the quick and efficient smoothing of images corrupted by noise, even when performed on large-dimensional data sets. This is particularly relevant since GPU cards are becoming more affordable, powerful and common in medical environments.en
dc.description.affiliationInstituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial Faculdade de Engenharia Universidade do Porto
dc.description.affiliationInstituto de Ciências Matemática e de Computação Universidade de São Paulo
dc.description.affiliationDepartamento de Ciências da Computação Universidade Estadual Paulista-UNESP
dc.description.affiliationInstituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial Departamento de Engenharia Mecânica Faculdade de Engenharia Universidade do Porto
dc.description.affiliationUnespDepartamento de Ciências da Computação Universidade Estadual Paulista-UNESP
dc.format.extent1-13
dc.identifierhttp://dx.doi.org/10.1007/s11554-016-0623-x
dc.identifier.citationJournal of Real-Time Image Processing, p. 1-13.
dc.identifier.doi10.1007/s11554-016-0623-x
dc.identifier.file2-s2.0-84979220864.pdf
dc.identifier.issn1861-8200
dc.identifier.scopus2-s2.0-84979220864
dc.identifier.urihttp://hdl.handle.net/11449/168836
dc.language.isoeng
dc.relation.ispartofJournal of Real-Time Image Processing
dc.relation.ispartofsjr0,322
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectCUDA
dc.subjectGPGPU
dc.subjectImage processing
dc.subjectMultiplicative noise
dc.titleEfficient parallelization on GPU of an image smoothing method based on a variational modelen
dc.typeArtigo
unesp.author.lattes1882712230914196[4]
unesp.author.orcid0000-0001-7603-6526[5]
unesp.author.orcid0000-0002-4337-514X[4]

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84979220864.pdf
Tamanho:
1.56 MB
Formato:
Adobe Portable Document Format
Descrição:

Coleções