Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

3D Auto-Segmentation of Mandibular Condyles

Nenhuma Miniatura disponível

Data

2020-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Temporomandibular joints (TMJ) like a hinge connect the jawbone to the skull. TMJ disorders could cause pain in the jaw joint and the muscles controlling jaw movement. However, the disease cannot be diagnosed until it becomes symptomatic. It has been shown that bone resorption at the condyle articular surface is already evident at initial diagnosis of TMJ Osteoarthritis (OA). Therefore, analyzing the bone structure will facilitate the disease diagnosis. The important step towards this analysis is the condyle segmentation. This article deals with a method to automatically segment the temporomandibular joint condyle out of cone beam CT (CBCT) scans. In the proposed method we denoise images and apply 3D active contour and morphological operations to segment the condyle. The experimental results show that the proposed method yields the Dice score of 0.9461 with the standards deviation of 0.0888 when it is applied on CBCT images of 95 patients. This segmentation will allow large datasets to be analyzed more efficiently towards data sciences and machine learning approaches for disease classification.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

42nd Annual International Conferences Of The Ieee Engineering In Medicine And Biology Society: Enabling Innovative Technologies For Global Healthcare Embc'20. New York: Ieee, p. 1270-1273, 2020.

Itens relacionados

Financiadores

Coleções