Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Neural network for fractal dimension evolution

dc.contributor.authorOliveira, Alessandra da Silva
dc.contributor.authorLopes, Veronica dos Santos
dc.contributor.authorCoutinho Filho, Ubirajara
dc.contributor.authorMoruzzi, Rodrigo Braga [UNESP]
dc.contributor.authorOliveira, Andre Luiz de
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-30T04:09:35Z
dc.date.available2018-11-30T04:09:35Z
dc.date.issued2018-08-01
dc.description.abstractThe coagulation/flocculation process is an essential step in drinking water treatment. The process of formation, growth, breakage and rearrangement of the formed aggregates is key to enhancing the understanding of the flocculation process. Artificial neural networks (ANNs) are a powerful technique, which can be used to model complex problems in several areas, such as water treatment. This work evaluated the evolution of the fractal dimension of aggregates obtained through ANN modeling in the coagulation/flocculation process conducted in high apparent color water (100 +/- 5 PtCo), using alum as coagulant in dosages varying from 1 to 12 mg Al3+ L-1, and shear rates from 20 to 60 s(-1) for flocculation times from 1 to 60 minutes. Based on raw data, the ANN model resulted in optimized condition of 9.5 mg Al3+ L-1 and pH 6.1, for color removal of 90.5%. For fractal dimension evolution, the ANN was able to represent from 95% to 99% of the results.en
dc.description.affiliationUniv Fed Uberlandia, Fac Engn Civil, Uberlandia, MG, Brazil
dc.description.affiliationUniv Fed Uberlandia, Fac Engn Quim, Uberlandia, MG, Brazil
dc.description.affiliationUniv Estadual Paulista UNESP, Inst Geociencias & Ciencias Exatas, Sao Paulo, Brazil
dc.description.affiliationUnespUniv Estadual Paulista UNESP, Inst Geociencias & Ciencias Exatas, Sao Paulo, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCNPq: 453912/2014-1
dc.description.sponsorshipIdFAPESP: 2017/19195-7
dc.format.extent795-802
dc.identifierhttp://dx.doi.org/10.2166/wst.2018.349
dc.identifier.citationWater Science And Technology. London: Iwa Publishing, v. 78, n. 4, p. 795-802, 2018.
dc.identifier.doi10.2166/wst.2018.349
dc.identifier.issn0273-1223
dc.identifier.urihttp://hdl.handle.net/11449/166340
dc.identifier.wosWOS:000445519000008
dc.language.isoeng
dc.publisherIwa Publishing
dc.relation.ispartofWater Science And Technology
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectartificial neural networks
dc.subjectflocculation
dc.subjectfractal aggregates
dc.titleNeural network for fractal dimension evolutionen
dc.typeArtigo
dcterms.rightsHolderIwa Publishing
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentPlanejamento Territorial e Geoprocessamento - IGCEpt

Arquivos