Bond Strength between Different Zirconia-Based Ceramics and Resin Cement before and after Aging
Nenhuma Miniatura disponível
Data
2022-10-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
The objective of this study was to evaluate the bond strength of different stabilized zirconias with resin cement and evaluate the susceptibility to thermal aging of the adhesive interface. Zirconia discs (Vita Zahnfabrik, Bad Säckingen, Germany) were obtained: 3Y-TZP first generation (translucent), 3Y-TZP third generation (high-translucent), 4Y-PSZ (super-translucent), and 5Y-PSZ (extra-translucent). Each disc had its surface polished with a standardized protocol. The specimens were cleaned and sintered according to the manufacturer’s recommendation (conventionally: ~12 h). However, 3Y-TZP groups were subdivided into subgroups and sintered following the speed sintering process (~80 min). After their sintering shrinkage, the dimensions of the final discs were 12 mm × 2 mm. The specimens were blasted with 50 μm aluminum oxide (1 cm distance, 2 bar pressure, and 2 s/cm²), cleaned, and silanized with an MDP primer. After the surface treatment, a resin cement cylinder was built on the ceramic surface (Ø = 1 mm; h = 2 mm). Half of the specimens of each group were subjected to a microshear bond strength test in a universal testing machine after 24 h of cementation, while the other half were subjected to thermocycling prior to the bond strength test (6000 cycles; 5 °C–55 °C, 30 s for each bath). Bond strength data were submitted to two-way ANOVA and Tukey’s test (95%), as well as Weibull analysis, to determine adhesive reliability. Bond strength was statistically different among the materials, and only 3Y-TZP third generation and 4Y-PSZ were not affected by thermal aging. The speed sintering method was statistically similar to the conventional process for 3Y-TZP first generation. However, 3Y-TZP third generation showed higher immediate bond strength when speed sintered. The Weibull modulus was superior for conventional 3Y-TZP third generation and 4Y-PSZ. In this study, thermal aging caused a degradation of the adhesive interfaces of 3Y-TZP first generation and 5Y-PSZ with the resin cement; however, it did not affect the interfaces of 3Y-TZP third generation and 4Y-PSZ. The speed sintering method did not affect the long-term bond strength with the resin cement. Adhesive reliability was superior for 3Y-TZP third generation and 4Y-PSZ.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Coatings, v. 12, n. 10, 2022.