PTL-AI Furnas Dataset: A Public Dataset for Fault Detection in Power Transmission Lines Using Aerial Images
dc.contributor.author | De Oliveira, Frederico Santos | |
dc.contributor.author | De Carvalho, Marcelo | |
dc.contributor.author | Campos, Pedro Henrique Tancredo | |
dc.contributor.author | Da Silva Soares, Anderson | |
dc.contributor.author | Junior, Arnaldo Candido [UNESP] | |
dc.contributor.author | Da Silva Quirino, Ana Claudia Rodrigues | |
dc.contributor.institution | Federal University of Mato Grosso (UFMT) | |
dc.contributor.institution | Eletrobras-Furnas | |
dc.contributor.institution | Universidade Federal de Goiás (UFG) | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2023-07-29T12:47:11Z | |
dc.date.available | 2023-07-29T12:47:11Z | |
dc.date.issued | 2022-01-01 | |
dc.description.abstract | We present a new images dataset called PTL-AI Furnas Dataset as a new benchmark for fault detection in power transmission lines. This dataset has 6,295 images, with resolution $1280\times 720$, extracted from the maintenance process of the energy transmission lines at Furnas company. It contains annotations of 17,808 components classified as baliser, bird nest, insulator, spacer and stockbridge. Furnas is a company that generates or transmits electricity to 51% of households in Brazil and more than 40% of the nation's electricity passes through their grid enabling generating the dataset in different backgrounds and climatic conditions. We performed experiments using data augmentation techniques to train Faster R-CNN, Single-Shot Detects (SSD) and YoloV5 models. The benchmark result was obtained using the metrics of Mean Average Precision (mAP) and the Mean Average Recall (mAR) with values mAP=91.9% and mAR=89.7%. The PTL-AI Furnas Dataset is publicly available at https://github.com/freds0/PTL-AI_Furnas_Dataset. | en |
dc.description.affiliation | Federal University of Mato Grosso (UFMT), MT | |
dc.description.affiliation | Eletrobras-Furnas, RJ | |
dc.description.affiliation | Universidade Federal de Goiás (UFG), GO | |
dc.description.affiliation | Universidade Estadual Paulista (UNESP), SP | |
dc.description.affiliationUnesp | Universidade Estadual Paulista (UNESP), SP | |
dc.format.extent | 7-12 | |
dc.identifier | http://dx.doi.org/10.1109/SIBGRAPI55357.2022.9991806 | |
dc.identifier.citation | Proceedings - 2022 35th Conference on Graphics, Patterns, and Images, SIBGRAPI 2022, p. 7-12. | |
dc.identifier.doi | 10.1109/SIBGRAPI55357.2022.9991806 | |
dc.identifier.scopus | 2-s2.0-85146439207 | |
dc.identifier.uri | http://hdl.handle.net/11449/246665 | |
dc.language.iso | eng | |
dc.relation.ispartof | Proceedings - 2022 35th Conference on Graphics, Patterns, and Images, SIBGRAPI 2022 | |
dc.source | Scopus | |
dc.title | PTL-AI Furnas Dataset: A Public Dataset for Fault Detection in Power Transmission Lines Using Aerial Images | en |
dc.type | Trabalho apresentado em evento |