Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

PTL-AI Furnas Dataset: A Public Dataset for Fault Detection in Power Transmission Lines Using Aerial Images

dc.contributor.authorDe Oliveira, Frederico Santos
dc.contributor.authorDe Carvalho, Marcelo
dc.contributor.authorCampos, Pedro Henrique Tancredo
dc.contributor.authorDa Silva Soares, Anderson
dc.contributor.authorJunior, Arnaldo Candido [UNESP]
dc.contributor.authorDa Silva Quirino, Ana Claudia Rodrigues
dc.contributor.institutionFederal University of Mato Grosso (UFMT)
dc.contributor.institutionEletrobras-Furnas
dc.contributor.institutionUniversidade Federal de Goiás (UFG)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-07-29T12:47:11Z
dc.date.available2023-07-29T12:47:11Z
dc.date.issued2022-01-01
dc.description.abstractWe present a new images dataset called PTL-AI Furnas Dataset as a new benchmark for fault detection in power transmission lines. This dataset has 6,295 images, with resolution $1280\times 720$, extracted from the maintenance process of the energy transmission lines at Furnas company. It contains annotations of 17,808 components classified as baliser, bird nest, insulator, spacer and stockbridge. Furnas is a company that generates or transmits electricity to 51% of households in Brazil and more than 40% of the nation's electricity passes through their grid enabling generating the dataset in different backgrounds and climatic conditions. We performed experiments using data augmentation techniques to train Faster R-CNN, Single-Shot Detects (SSD) and YoloV5 models. The benchmark result was obtained using the metrics of Mean Average Precision (mAP) and the Mean Average Recall (mAR) with values mAP=91.9% and mAR=89.7%. The PTL-AI Furnas Dataset is publicly available at https://github.com/freds0/PTL-AI_Furnas_Dataset.en
dc.description.affiliationFederal University of Mato Grosso (UFMT), MT
dc.description.affiliationEletrobras-Furnas, RJ
dc.description.affiliationUniversidade Federal de Goiás (UFG), GO
dc.description.affiliationUniversidade Estadual Paulista (UNESP), SP
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP), SP
dc.format.extent7-12
dc.identifierhttp://dx.doi.org/10.1109/SIBGRAPI55357.2022.9991806
dc.identifier.citationProceedings - 2022 35th Conference on Graphics, Patterns, and Images, SIBGRAPI 2022, p. 7-12.
dc.identifier.doi10.1109/SIBGRAPI55357.2022.9991806
dc.identifier.scopus2-s2.0-85146439207
dc.identifier.urihttp://hdl.handle.net/11449/246665
dc.language.isoeng
dc.relation.ispartofProceedings - 2022 35th Conference on Graphics, Patterns, and Images, SIBGRAPI 2022
dc.sourceScopus
dc.titlePTL-AI Furnas Dataset: A Public Dataset for Fault Detection in Power Transmission Lines Using Aerial Imagesen
dc.typeTrabalho apresentado em evento

Arquivos

Coleções