Physicochemical properties and osteoclastogenesis for three premixed calcium silicate-based sealers post set
Nenhuma Miniatura disponível
Data
2022-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
Solubility, pH, ion release, cytotoxicity, and osteoclastogenesis inhibition in bone marrow-derived monocyte macrophages (BMMs) were evaluated in EndoSequence BC Sealer (END), Bio-C Sealer (BC), and Sealer Plus BC (SPBC). pH was determined after immersion of the sealers in deionized water (DW) and Minimum Essential Medium Alpha (α-MEM). Solubility was obtained by mass loss. Ion release was measured by using X-ray fluorescence spectroscopy (XRF). Cytotoxicity was evaluated by MTT assay. Inhibition of osteoclastogenesis was evaluated by tartrate-resistant acid phosphatase (TRAP). Data were analyzed using the t-test, ANOVA and Tukey/Dunnett’s post-hoc tests (α = 0.05). END had the highest pH in DW (p < 0.05), and BC, in α-MEM (p < 0.05). Solubility in DW was the lowest for SPBC (p < 0.005). The highest calcium release was observed for BC in DW at 12 h (p < 0.05), and in α-MEM at 12 and 24 h (p < 0.05). The lowest toxicity was detected for END (p < 0.05). BC had the highest inhibitory effect on osteoclasts (p < 0.05). Overall, the highest solubility and pH values were found in DW. However, the calcium silicate-based sealer showed higher solubility than the ISO standards. Calcium release was the highest for BC. END showed the highest cell viability, and BC, the highest osteoclast inhibition.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Brazilian Oral Research, v. 36.