Publicação:
Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets

dc.contributor.authorNogueira, Keiller
dc.contributor.authorDos Santos, Jefersson A.
dc.contributor.authorCancian, Leonardo [UNESP]
dc.contributor.authorBorges, Bruno D. [UNESP]
dc.contributor.authorSilva, Thiago S. F. [UNESP]
dc.contributor.authorMorellato, Leonor Patricia [UNESP]
dc.contributor.authorTorres, Ricardo Da S.
dc.contributor.institutionUniversidade Federal de Minas Gerais (UFMG)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2022-04-30T05:29:49Z
dc.date.available2022-04-30T05:29:49Z
dc.date.issued2017-12-01
dc.description.abstractVegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies.en
dc.description.affiliationDepartment of Computer Science Universidade Federal de Minas Gerais
dc.description.affiliationUniversidade Estadual Paulista Instituto de Geociências e Ciências Exatas (IGCE)
dc.description.affiliationUniversidade Estadual Paulista Instituto de Biociências (IB)
dc.description.affiliationInstitute of Computing University of Campinas
dc.description.affiliationUnespUniversidade Estadual Paulista Instituto de Geociências e Ciências Exatas (IGCE)
dc.description.affiliationUnespUniversidade Estadual Paulista Instituto de Biociências (IB)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent3787-3790
dc.identifierhttp://dx.doi.org/10.1109/IGARSS.2017.8127824
dc.identifier.citationInternational Geoscience and Remote Sensing Symposium (IGARSS), v. 2017-July, p. 3787-3790.
dc.identifier.doi10.1109/IGARSS.2017.8127824
dc.identifier.scopus2-s2.0-85041842843
dc.identifier.urihttp://hdl.handle.net/11449/232709
dc.language.isoeng
dc.relation.ispartofInternational Geoscience and Remote Sensing Symposium (IGARSS)
dc.sourceScopus
dc.subjectDeep Learning
dc.subjectPlant Species
dc.subjectSemantic Image Segmentation
dc.subjectUnmanned Aerial Vehicles
dc.titleSemantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNetsen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Rio Claropt
unesp.departmentBotânica - IBpt

Arquivos