Publicação: Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets
dc.contributor.author | Nogueira, Keiller | |
dc.contributor.author | Dos Santos, Jefersson A. | |
dc.contributor.author | Cancian, Leonardo [UNESP] | |
dc.contributor.author | Borges, Bruno D. [UNESP] | |
dc.contributor.author | Silva, Thiago S. F. [UNESP] | |
dc.contributor.author | Morellato, Leonor Patricia [UNESP] | |
dc.contributor.author | Torres, Ricardo Da S. | |
dc.contributor.institution | Universidade Federal de Minas Gerais (UFMG) | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2022-04-30T05:29:49Z | |
dc.date.available | 2022-04-30T05:29:49Z | |
dc.date.issued | 2017-12-01 | |
dc.description.abstract | Vegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies. | en |
dc.description.affiliation | Department of Computer Science Universidade Federal de Minas Gerais | |
dc.description.affiliation | Universidade Estadual Paulista Instituto de Geociências e Ciências Exatas (IGCE) | |
dc.description.affiliation | Universidade Estadual Paulista Instituto de Biociências (IB) | |
dc.description.affiliation | Institute of Computing University of Campinas | |
dc.description.affiliationUnesp | Universidade Estadual Paulista Instituto de Geociências e Ciências Exatas (IGCE) | |
dc.description.affiliationUnesp | Universidade Estadual Paulista Instituto de Biociências (IB) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.format.extent | 3787-3790 | |
dc.identifier | http://dx.doi.org/10.1109/IGARSS.2017.8127824 | |
dc.identifier.citation | International Geoscience and Remote Sensing Symposium (IGARSS), v. 2017-July, p. 3787-3790. | |
dc.identifier.doi | 10.1109/IGARSS.2017.8127824 | |
dc.identifier.scopus | 2-s2.0-85041842843 | |
dc.identifier.uri | http://hdl.handle.net/11449/232709 | |
dc.language.iso | eng | |
dc.relation.ispartof | International Geoscience and Remote Sensing Symposium (IGARSS) | |
dc.source | Scopus | |
dc.subject | Deep Learning | |
dc.subject | Plant Species | |
dc.subject | Semantic Image Segmentation | |
dc.subject | Unmanned Aerial Vehicles | |
dc.title | Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets | en |
dc.type | Trabalho apresentado em evento | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Biociências, Rio Claro | pt |
unesp.department | Botânica - IB | pt |