Evolutionary optimization applied for fine-tuning parameter estimation in optical flow-based environments

Nenhuma Miniatura disponível

Data

2014-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Optical flow methods are accurate algorithms for estimating the displacement and velocity fields of objects in a wide variety of applications, being their performance dependent on the configuration of a set of parameters. Since there is a lack of research that aims to automatically tune such parameters, in this work we have proposed an evolutionary-based framework for such task, thus introducing three techniques for such purpose: Particle Swarm Optimization, Harmony Search and Social-Spider Optimization. The proposed framework has been compared against with the well-known Large Displacement Optical Flow approach, obtaining the best results in three out eight image sequences provided by a public dataset. Additionally, the proposed framework can be used with any other optimization technique.

Descrição

Idioma

Inglês

Como citar

2014 27th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 125-132, 2014.

Itens relacionados

Financiadores