A nature-inspired approach to speed up optimum-path forest clustering and its application to intrusion detection in computer networks

dc.contributor.authorCosta, Kelton A. P. [UNESP]
dc.contributor.authorPereira, Luis A. M.
dc.contributor.authorNakamura, Rodrigo Y. M. [UNESP]
dc.contributor.authorPereira, Clayton R.
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorFalcao, Alexandre Xavier
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2015-10-21T21:03:16Z
dc.date.available2015-10-21T21:03:16Z
dc.date.issued2015-02-10
dc.description.abstractWe propose a nature-inspired approach to estimate the probability density function (pdf) used for data clustering based on the optimum-path forest algorithm (OPFC). OPFC interprets a dataset as a graph, whose nodes are the samples and each sample is connected to its k-nearest neighbors in a given feature space (a k-nn graph). The nodes of the graph are weighted by their pdf values and the pdf is computed based on the distances between the samples and their k-nearest neighbors. Once the k-nn graph is defined, OPFC finds one sample (root) at each maximum of the pdf and propagates one optimum-path tree (cluster) from each root to the remaining samples of its dome. Clustering effectiveness will depend on the pdf estimation, and the proposed approach efficiently computes the best value of k for a given application. We validate our approach in the context of intrusion detection in computer networks. First, we compare OPFC with data clustering based on k-means, and self-organization maps. Second, we evaluate several metaheuristic techniques to find the best value of k. (C) 2014 Elsevier Inc. All rights reserved.en
dc.description.affiliationUniv Estadual Paulista, Dept Comp, Bauru, Brazil
dc.description.affiliationUniv Estadual Campinas, Inst Comp, Campinas, Brazil
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, BR-13560 Sao Carlos, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Comp, Bauru, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2009/16206-1
dc.description.sponsorshipIdFAPESP: 2010/02045-3
dc.description.sponsorshipIdFAPESP: 2011/14058-5
dc.description.sponsorshipIdFAPESP: 2011/14094-1
dc.description.sponsorshipIdFAPESP: 2013/20387-7
dc.description.sponsorshipIdCNPq: 303673/2010-9
dc.description.sponsorshipIdCNPq: 3031821/2011-3
dc.description.sponsorshipIdCNPq: 470571/2013-6
dc.format.extent95-108
dc.identifier.citationInformation Sciences, v. 294, p. 95-108, 2015.
dc.identifier.doi10.1016/j.ins.2014.09.025
dc.identifier.issn0020-0255
dc.identifier.urihttp://hdl.handle.net/11449/129417
dc.identifier.wosWOS:000346542800008
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofInformation Sciences
dc.relation.ispartofjcr4.305
dc.relation.ispartofsjr1,635
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectIntrusion detectionen
dc.subjectOptimum-path foresten
dc.subjectMeta-heuristicen
dc.subjectClusteringen
dc.titleA nature-inspired approach to speed up optimum-path forest clustering and its application to intrusion detection in computer networksen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
unesp.author.orcid0000-0001-5458-3908[1]
unesp.author.orcid0000-0002-6494-7514[5]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos