The Yang-Lee zeros of the 1D Blume-Capel model on connected and non-connected rings

dc.contributor.authorAlmeida, LAF
dc.contributor.authorDalmazi, D.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:29:10Z
dc.date.available2014-05-20T15:29:10Z
dc.date.issued2005-08-05
dc.description.abstractWe carry out a numerical and analytic analysis of the Yang-Lee zeros of the ID Blume-Capel model with periodic boundary conditions and its generalization on Feynman diagrams for which we include sums over all connected and nonconnected rings for a given number of spins. In both cases, for a specific range of the parameters, the zeros originally on the unit circle are shown to depart from it as we increase the temperature beyond some limit. The curve of zeros can bifurcate- and become two disjoint arcs as in the 2D case. We also show that in the thermodynamic limit the zeros of both Blume-Capel models on the static (connected ring) and on the dynamical (Feynman diagrams) lattice tend to overlap. In the special case of the 1D Ising model on Feynman diagrams we can prove for arbitrary number of spins that the Yang-Lee zeros must be on the unit circle. The proof is based on a property of the zeros of Legendre polynomials.en
dc.description.affiliationUNESP, BR-12516410 Guaratingueta, SP, Brazil
dc.description.affiliationUnespUNESP, BR-12516410 Guaratingueta, SP, Brazil
dc.format.extent6863-6877
dc.identifierhttp://dx.doi.org/10.1088/0305-4470/38/31/001
dc.identifier.citationJournal of Physics A-mathematical and General. Bristol: Iop Publishing Ltd, v. 38, n. 31, p. 6863-6877, 2005.
dc.identifier.doi10.1088/0305-4470/38/31/001
dc.identifier.issn0305-4470
dc.identifier.urihttp://hdl.handle.net/11449/38806
dc.identifier.wosWOS:000231455900001
dc.language.isoeng
dc.publisherIop Publishing Ltd
dc.relation.ispartofJournal of Physics A: Mathematical and General
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.titleThe Yang-Lee zeros of the 1D Blume-Capel model on connected and non-connected ringsen
dc.typeArtigo
dcterms.licensehttp://iopscience.iop.org/page/copyright
dcterms.rightsHolderIop Publishing Ltd

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:

Coleções