Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Chemoreception and neuroplasticity in respiratory circuits

dc.contributor.authorBarnett, William H.
dc.contributor.authorAbdala, Ana P.
dc.contributor.authorPaton, Julian F. R.
dc.contributor.authorRybak, Ilya A.
dc.contributor.authorZoccal, Daniel B. [UNESP]
dc.contributor.authorMolkov, Yaroslav I.
dc.contributor.institutionGeorgia State Univ
dc.contributor.institutionUniv Bristol
dc.contributor.institutionDrexel Univ
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T15:37:45Z
dc.date.available2018-11-26T15:37:45Z
dc.date.issued2017-01-01
dc.description.abstractThe respiratory central pattern generator must respond to chemosensory cues to maintain oxygen (O-2) and carbon dioxide (CO2) homeostasis in the blood and tissues. To do this, sensorial cells located in the periphery and central nervous system monitor the arterial partial pressure of O-2 and CO2 and initiate respiratory and autonomic reflex adjustments in conditions of hypoxia and hypercapnia. In conditions of chronic intermittent hypoxia (CIH), repeated peripheral chemoreceptor input mediated by the nucleus of the solitary tract induces plastic changes in respiratory circuits that alter baseline respiratory and sympathetic motor outputs and result in chemoreflex sensitization, active expiration, and arterial hypertension. Herein, we explored the hypothesis that the CIH-induced neuroplasticity primarily consists of increased excitability of pre-inspiratory/inspiratory neurons in the preBotzinger complex. To evaluate this hypothesis and elucidate neural mechanisms for the emergence of active expiration and sympathetic overactivity in CIH-treated animals, we extended a previously developed computational model of the brainstem respiratory-sympathetic network to reproduce experimental data on peripheral and central chemoreflexes post-CIH. The model incorporated neuronal connections between the 2nd-order NTS neurons and peripheral chemoreceptors afferents, the respiratory pattern generator, and sympathetic neurons in the rostra] ventrolateral medulla in order to capture key features of sympathetic and respiratory responses to peripheral chemoreflex stimulation. Our model identifies the potential neuronal groups recruited during peripheral chemoreflex stimulation that may be required for the development of inspiratory, expiratory and sympathetic reflex responses. Moreover, our model predicts that pre-inspiratory neurons in the pre-Botzinger complex experience plasticity of channel expression due to excessive excitation during peripheral chemoreflex. Simulations also show that, due to positive interactions between pre-inspiratory neurons in the pre-Botzinger complex and expiratory neurons in the retrotrapezoid nucleus, increased excitability of the former may lead to the emergence of the active expiratory pattern at normal CO2 levels found after CIH exposure. We conclude that neuronal type specific neuroplasticity in the pre-Botzinger complex induced by repetitive episodes of peripheral chemoreceptor activation by hypoxia may contribute to the development of sympathetic over-activity and hypertension. (C) 2016 Elsevier Inc All rights reserved.en
dc.description.affiliationGeorgia State Univ, Atlanta, GA 30303 USA
dc.description.affiliationUniv Bristol, Sch Physiol Pharmacol & Neurosci, Bristol BS8 1TH, Avon, England
dc.description.affiliationDrexel Univ, Coll Med, Philadelphia, PA 19104 USA
dc.description.affiliationSao Paulo State Univ, Araraquara, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Araraquara, Brazil
dc.description.sponsorshipNIH
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipBritish Heart Foundation
dc.description.sponsorshipInternational Rett Syndrome Foundation
dc.description.sponsorshipIdNIH: R01 AT008632
dc.description.sponsorshipIdNIH: R01 NS069220
dc.description.sponsorshipIdFAPESP: 2013/17251-6
dc.format.extent153-164
dc.identifierhttp://dx.doi.org/10.1016/j.expneurol.2016.05.036
dc.identifier.citationExperimental Neurology. San Diego: Academic Press Inc Elsevier Science, v. 287, p. 153-164, 2017.
dc.identifier.doi10.1016/j.expneurol.2016.05.036
dc.identifier.fileWOS000391159100008.pdf
dc.identifier.issn0014-4886
dc.identifier.urihttp://hdl.handle.net/11449/159277
dc.identifier.wosWOS:000391159100008
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofExperimental Neurology
dc.relation.ispartofsjr2,157
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectRespiration
dc.subjectObstructive sleep apnea
dc.subjectHypertension
dc.subjectChronic intermittent hypoxia
dc.subjectPeripheral chemoreception
dc.subjectPlasticity
dc.titleChemoreception and neuroplasticity in respiratory circuitsen
dc.typeResenha
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000391159100008.pdf
Tamanho:
1.39 MB
Formato:
Adobe Portable Document Format
Descrição:

Coleções