EEG Channel Selection for Person Identification Using Binary Grey Wolf Optimizer

dc.contributor.authorAlyasseri, Zaid Abdi Alkareem
dc.contributor.authorAlomari, Osama Ahmad
dc.contributor.authorMakhadmeh, Sharif Naser
dc.contributor.authorMirjalili, Seyedali
dc.contributor.authorAl-Betar, Mohammed Azmi
dc.contributor.authorAbdullah, Salwani
dc.contributor.authorAli, Nabeel Salih
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorRodrigues, Douglas [UNESP]
dc.contributor.authorAbasi, Ammar Kamal
dc.contributor.institutionFaculty of Information Science and Technology
dc.contributor.institutionInformation Technology Research and Development Center (ITRDC)
dc.contributor.institutionMLALP Research Group
dc.contributor.institutionCollege of Engineering and Information Technology
dc.contributor.institutionCentre for Artificial Intelligence Research and Optimisation
dc.contributor.institutionYonsei Frontier Laboratory
dc.contributor.institutionAl-Huson
dc.contributor.institutionITRDC
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-05-01T13:11:34Z
dc.date.available2022-05-01T13:11:34Z
dc.date.issued2022-01-01
dc.description.abstractElectroencephalogram signals (EEG) have provided biometric identification systems with great capabilities. Several studies have shown that EEG introduces unique and universal features besides specific strength against spoofing attacks. Essentially, EEG is a graphic recording of the brain’s electrical activity calculated by sensors (electrodes) on the scalp at different spots, but their best locations are uncertain. In this paper, the EEG channel selection problem is formulated as a binary optimization problem, where a binary version of the Grey Wolf Optimizer (BGWO) is used to find an optimal solution for such an NP-hard optimization problem. Further, a Support Vector Machine classifier with a Radial Basis Function kernel (SVM-RBF) is then considered for EEG-based biometric person identification. For feature extraction purposes, we examine three different auto-regressive coefficients. A standard EEG motor imagery dataset is employed to evaluate the proposed method, including four criteria: (i) Accuracy, (ii) F-Score, (iii) Recall, and (v) Specificity. In the experimental results, the proposed method (named BGWO-SVM) obtained 94.13% accuracy using only 23 sensors with 5 auto-regressive coefficients. Besides, BGWO-SVM finds electrodes not too close to each other to capture relevant information all over the head. As concluding remarks, BGWO-SVM achieved the best results concerning the number of selected channels and competitive classification accuracies against other meta-heuristics algorithms.en
dc.description.affiliationUniversiti Kebangsaan Malaysia Center for Artificial Intelligence Faculty of Information Science and Technology, Bangi
dc.description.affiliationUniversity of Kufa Information Technology Research and Development Center (ITRDC)
dc.description.affiliationUniversity of Sharjah MLALP Research Group
dc.description.affiliationAjman University Artificial Intelligence Research Center (AIRC) College of Engineering and Information Technology
dc.description.affiliationTorrens University Australia Fortitude Valley Centre for Artificial Intelligence Research and Optimisation
dc.description.affiliationYonsei University Yonsei Frontier Laboratory
dc.description.affiliationAl-Huson University College Al-Balqa Applied University Al-Huson Department of Information Technology
dc.description.affiliationUniversity of Kufa ITRDC
dc.description.affiliationSão Paulo State University Department of Computing
dc.description.affiliationUnespSão Paulo State University Department of Computing
dc.format.extent10500-10513
dc.identifierhttp://dx.doi.org/10.1109/ACCESS.2021.3135805
dc.identifier.citationIEEE Access, v. 10, p. 10500-10513.
dc.identifier.doi10.1109/ACCESS.2021.3135805
dc.identifier.issn2169-3536
dc.identifier.scopus2-s2.0-85123727420
dc.identifier.urihttp://hdl.handle.net/11449/234066
dc.language.isoeng
dc.relation.ispartofIEEE Access
dc.sourceScopus
dc.subjectAuthentication
dc.subjectElectrodes
dc.subjectElectroencephalography
dc.subjectIris recognition
dc.subjectSensors
dc.subjectSupport vector machines
dc.subjectVisualization
dc.titleEEG Channel Selection for Person Identification Using Binary Grey Wolf Optimizeren
dc.typeArtigo
unesp.author.orcid0000-0003-4228-9298 0000-0003-4228-9298[1]
unesp.author.orcid0000-0003-4244-5879[2]
unesp.author.orcid0000-0002-2894-7998[3]
unesp.author.orcid0000-0003-1980-1791 0000-0003-1980-1791[5]
unesp.author.orcid0000-0003-0037-841X[6]
unesp.author.orcid0000-0001-9988-5619[7]
unesp.author.orcid0000-0002-6494-7514[8]
unesp.author.orcid0000-0003-0725-6167[10]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos