Discovering promising regions to help global numerical optimization algorithms
Nenhuma Miniatura disponível
Data
2007-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Springer
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto
Resumo
We have developed an algorithm using a Design of Experiments technique for reduction of search-space in global optimization problems. Our approach is called Domain Optimization Algorithm. This approach can efficiently eliminate search-space regions with low probability of containing a global optimum. The Domain Optimization Algorithm approach is based on eliminating non-promising search-space regions, which are identifyed using simple models (linear) fitted to the data. Then, we run a global optimization algorithm starting its population inside the promising region. The proposed approach with this heuristic criterion of population initialization has shown relevant results for tests using hard benchmark functions.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Micai 2007: Advances In Artificial Intelligence. Berlin: Springer-verlag Berlin, v. 4827, p. 72-82, 2007.