Discovering promising regions to help global numerical optimization algorithms

Nenhuma Miniatura disponível

Data

2007-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Springer

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

We have developed an algorithm using a Design of Experiments technique for reduction of search-space in global optimization problems. Our approach is called Domain Optimization Algorithm. This approach can efficiently eliminate search-space regions with low probability of containing a global optimum. The Domain Optimization Algorithm approach is based on eliminating non-promising search-space regions, which are identifyed using simple models (linear) fitted to the data. Then, we run a global optimization algorithm starting its population inside the promising region. The proposed approach with this heuristic criterion of population initialization has shown relevant results for tests using hard benchmark functions.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Micai 2007: Advances In Artificial Intelligence. Berlin: Springer-verlag Berlin, v. 4827, p. 72-82, 2007.

Itens relacionados

Financiadores

Coleções