Dynamical aspects of the unzipping of multiwalled boron nitride nanotubes

Nenhuma Miniatura disponível

Data

2013-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Royal Soc Chemistry

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

Boron nitride nanoribbons (BNNRs) exhibit very interesting magnetic properties, which could be very useful in the development of spintronic based devices. One possible route to obtain BNNRs is through the unzipping of boron nitride nanotubes (BNNTs), which have been already experimentally realized. In this work, different aspects of the unzipping process of BNNTs were investigated through fully atomistic molecular dynamics simulations using a classical reactive force field (ReaxFF). We investigated multiwalled BNNTs of different diameters and chiralities. Our results show that chirality plays a very important role in the unzipping process, as well as the interlayer coupling. These combined aspects significantly change the fracturing patterns and several other features of the unzipping processes in comparison to the ones observed for carbon nanotubes. Also, similar to carbon nanotubes, defective BNNTs can create regions of very high curvature which can act as a path to the unzipping process.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Physical Chemistry Chemical Physics. Cambridge: Royal Soc Chemistry, v. 15, n. 44, p. 19147-19150, 2013.

Itens relacionados