Metrics to support the evaluation of association rule clustering

dc.contributor.authorDe Carvalho, Veronica Oliveira [UNESP]
dc.contributor.authorDos Santos, Fabiano Fernandes
dc.contributor.authorRezende, Solange Oliveira
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2014-05-27T11:30:45Z
dc.date.available2014-05-27T11:30:45Z
dc.date.issued2013-09-26
dc.description.abstractMany topics related to association mining have received attention in the research community, especially the ones focused on the discovery of interesting knowledge. A promising approach, related to this topic, is the application of clustering in the pre-processing step to aid the user to find the relevant associative patterns of the domain. In this paper, we propose nine metrics to support the evaluation of this kind of approach. The metrics are important since they provide criteria to: (a) analyze the methodologies, (b) identify their positive and negative aspects, (c) carry out comparisons among them and, therefore, (d) help the users to select the most suitable solution for their problems. Some experiments were done in order to present how the metrics can be used and their usefulness. © 2013 Springer-Verlag GmbH.en
dc.description.affiliationInstituto de Geociências e Ciências Exatas UNESP - Univ. Estadual Paulista, Rio Claro
dc.description.affiliationInstituto de Ciências Matemáticas e de Computaçã o USP - Universidade de São Paulo, São Carlos
dc.description.affiliationUnespInstituto de Geociências e Ciências Exatas UNESP - Univ. Estadual Paulista, Rio Claro
dc.format.extent248-259
dc.identifierhttp://dx.doi.org/10.1007/978-3-642-40131-2_21
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8057 LNCS, p. 248-259.
dc.identifier.doi10.1007/978-3-642-40131-2_21
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-84884493837
dc.identifier.urihttp://hdl.handle.net/11449/76645
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.relation.ispartofsjr0,295
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectAssociation Rules
dc.subjectClustering
dc.subjectPre-processing
dc.subjectAssociation mining
dc.subjectPre-processing step
dc.subjectResearch communities
dc.subjectSuitable solutions
dc.subjectData warehouses
dc.subjectAssociation rules
dc.titleMetrics to support the evaluation of association rule clusteringen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights

Arquivos

Coleções