Borsuk-Ulam theorem for filtered spaces

dc.contributor.authorBiasi, Carlos
dc.contributor.authorLibardi, Alice Kimie Miwa [UNESP]
dc.contributor.authorDe Mattos, Denise
dc.contributor.authorUra, Sergio Tsuyoshi [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2021-06-25T10:50:47Z
dc.date.available2021-06-25T10:50:47Z
dc.date.issued2021-03-01
dc.description.abstractLet X and Y be pathwise connected and paracompact Hausdorff spaces equipped with free involutions T:X→X and S:Y→Y, respectively. Suppose that there exists a sequence (Xi,Ti)→ hi (Xi+1,Ti+1) for 1≤i≤k, where, for each i, Xi is a pathwise connected and paracompact Hausdorff space equipped with a free involution Ti, such that Xk+1=X, and hi:Xi→Xi+1 is an equivariant map, for all 1≤i≤k. To achieve Borsuk-Ulam-type theorems, in several results that appear in the literature, the involved spaces X in the statements are assumed to be cohomological n-acyclic spaces. In this paper, by considering a more wide class of topological spaces X (which are not necessarily cohomological n-acyclic spaces), we prove that there is no equivariant map f:(X,T)→(Y,S) and we present some interesting examples to illustrate our results.en
dc.description.affiliationDepartamento de Matemática Institute of Geosciences and Exact Sciences São Paulo State University (Unesp) Rio Claro Bela Vista
dc.description.affiliationDepartamento de Matemática Instituto de Ciências Matemáticas e de Computação São Paulo University (USP) Câmpus de São Carlos
dc.description.affiliationUnespDepartamento de Matemática Institute of Geosciences and Exact Sciences São Paulo State University (Unesp) Rio Claro Bela Vista
dc.format.extent419-426
dc.identifierhttp://dx.doi.org/10.1515/forum-2019-0291
dc.identifier.citationForum Mathematicum, v. 33, n. 2, p. 419-426, 2021.
dc.identifier.doi10.1515/forum-2019-0291
dc.identifier.issn1435-5337
dc.identifier.issn0933-7741
dc.identifier.scopus2-s2.0-85100150157
dc.identifier.urihttp://hdl.handle.net/11449/207211
dc.language.isoeng
dc.relation.ispartofForum Mathematicum
dc.sourceScopus
dc.subjectBorsuk-Ulam theorems
dc.subjectequivariant maps
dc.subjectfiltered spaces
dc.subjectinvolutions
dc.titleBorsuk-Ulam theorem for filtered spacesen
dc.typeArtigo
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentMatemática - IGCEpt

Arquivos