Borsuk-Ulam theorem for filtered spaces
dc.contributor.author | Biasi, Carlos | |
dc.contributor.author | Libardi, Alice Kimie Miwa [UNESP] | |
dc.contributor.author | De Mattos, Denise | |
dc.contributor.author | Ura, Sergio Tsuyoshi [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.date.accessioned | 2021-06-25T10:50:47Z | |
dc.date.available | 2021-06-25T10:50:47Z | |
dc.date.issued | 2021-03-01 | |
dc.description.abstract | Let X and Y be pathwise connected and paracompact Hausdorff spaces equipped with free involutions T:X→X and S:Y→Y, respectively. Suppose that there exists a sequence (Xi,Ti)→ hi (Xi+1,Ti+1) for 1≤i≤k, where, for each i, Xi is a pathwise connected and paracompact Hausdorff space equipped with a free involution Ti, such that Xk+1=X, and hi:Xi→Xi+1 is an equivariant map, for all 1≤i≤k. To achieve Borsuk-Ulam-type theorems, in several results that appear in the literature, the involved spaces X in the statements are assumed to be cohomological n-acyclic spaces. In this paper, by considering a more wide class of topological spaces X (which are not necessarily cohomological n-acyclic spaces), we prove that there is no equivariant map f:(X,T)→(Y,S) and we present some interesting examples to illustrate our results. | en |
dc.description.affiliation | Departamento de Matemática Institute of Geosciences and Exact Sciences São Paulo State University (Unesp) Rio Claro Bela Vista | |
dc.description.affiliation | Departamento de Matemática Instituto de Ciências Matemáticas e de Computação São Paulo University (USP) Câmpus de São Carlos | |
dc.description.affiliationUnesp | Departamento de Matemática Institute of Geosciences and Exact Sciences São Paulo State University (Unesp) Rio Claro Bela Vista | |
dc.format.extent | 419-426 | |
dc.identifier | http://dx.doi.org/10.1515/forum-2019-0291 | |
dc.identifier.citation | Forum Mathematicum, v. 33, n. 2, p. 419-426, 2021. | |
dc.identifier.doi | 10.1515/forum-2019-0291 | |
dc.identifier.issn | 1435-5337 | |
dc.identifier.issn | 0933-7741 | |
dc.identifier.scopus | 2-s2.0-85100150157 | |
dc.identifier.uri | http://hdl.handle.net/11449/207211 | |
dc.language.iso | eng | |
dc.relation.ispartof | Forum Mathematicum | |
dc.source | Scopus | |
dc.subject | Borsuk-Ulam theorems | |
dc.subject | equivariant maps | |
dc.subject | filtered spaces | |
dc.subject | involutions | |
dc.title | Borsuk-Ulam theorem for filtered spaces | en |
dc.type | Artigo | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.department | Matemática - IGCE | pt |