Publicação:
Artificial intelligence approach based on near-infrared spectral data for monitoring of solid-state fermentation

dc.contributor.authorBarchi, Augusto Cesar [UNESP]
dc.contributor.authorIto, Shuri [UNESP]
dc.contributor.authorEscaramboni, Bruna [UNESP]
dc.contributor.authorOliva Neto, Pedro de [UNESP]
dc.contributor.authorHerculano, Rondinelli Donizetti [UNESP]
dc.contributor.authorRomeiro Miranda, Matheus Carlos [UNESP]
dc.contributor.authorPassalia, Felipe Jose [UNESP]
dc.contributor.authorRocha, Jose Celso [UNESP]
dc.contributor.authorFernandez Nunez, Eutimio Gustavo [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:06:23Z
dc.date.available2018-11-26T17:06:23Z
dc.date.issued2016-10-01
dc.description.abstractThis work aimed to establish a chemometric technique for quantifying amylase and protease activities as well as protein concentration in aqueous extracts of Rhizopus microsporus var. oligosporus obtained via solid-state fermentation (SSF). The kinetics of four agro-industrial wastes (wheat bran, soybean meal, type II wheat flour and sugarcane bagasse) were studied for 144 h, along with two different sets of their ternary mixtures, at a constant fermentation time of 120 h, to obtain primary data (biochemical parameters as well as near-infrared (NIR) spectral data). Then, models such as artificial neural network (ANN) and partial least squares (PLS) were calibrated to predict biochemical parameters using the spectral data. Primary data and three methods of preprocessing data - first, second and third derivatives - were assessed as inputs for both chemometric tools. The third derivative, that is, spectral pre-processing plus an optimized ANN, showed the least relative errors (<8.3%+/- 10.5%). The third-derivative spectrum was found to be suitable as the ANN input data for monitoring amylase and protease activities and protein concentration in the SSF under study. The proposed methodology can serve as a foundation for at-line sensor development and decrease the time and cost of bioprocess development using Rhizopus microsporus var. oligosporus. (C) 2016 Elsevier Ltd. All rights reserved.en
dc.description.affiliationUniv Estadual Paulista, Dept Ciencias Biol, Grp Engn Bioproc, Campus Assis,Ave Dom Antonio 2100, BR-19806900 Assis, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, Dept Ciencias Biol, Lab Biotecnol Ind, Campus Assis,Ave Dom Antonio 2100, BR-19806900 Assis, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, Dept Ciencias Biol, Inst Quim Araraquara, Campus Araraquara,Rua Prof Francisco Degni 55, BR-14800900 Araraquara, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, Dept Ciencias Biol, Lab Matemat Aplicada, Campus Assis,Ave Dom Antonio 2100, BR-19806900 Assis, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Ciencias Biol, Grp Engn Bioproc, Campus Assis,Ave Dom Antonio 2100, BR-19806900 Assis, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Ciencias Biol, Lab Biotecnol Ind, Campus Assis,Ave Dom Antonio 2100, BR-19806900 Assis, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Ciencias Biol, Inst Quim Araraquara, Campus Araraquara,Rua Prof Francisco Degni 55, BR-14800900 Araraquara, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Ciencias Biol, Lab Matemat Aplicada, Campus Assis,Ave Dom Antonio 2100, BR-19806900 Assis, SP, Brazil
dc.description.sponsorshipFundação para o Desenvolvimento da UNESP (FUNDUNESP)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFUNDUNESP: 0312/001/14-Prope/CDC
dc.description.sponsorshipIdFAPESP: 14/06447-0
dc.format.extent1338-1347
dc.identifierhttp://dx.doi.org/10.1016/j.procbio.2016.07.017
dc.identifier.citationProcess Biochemistry. Oxford: Elsevier Sci Ltd, v. 51, n. 10, p. 1338-1347, 2016.
dc.identifier.doi10.1016/j.procbio.2016.07.017
dc.identifier.fileWOS000384384600004.pdf
dc.identifier.issn1359-5113
dc.identifier.lattes4638952263502744
dc.identifier.orcid0000-0001-9378-9036
dc.identifier.urihttp://hdl.handle.net/11449/161974
dc.identifier.wosWOS:000384384600004
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofProcess Biochemistry
dc.relation.ispartofsjr0,761
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectArtificial neural network
dc.subjectBioprocess monitoring
dc.subjectChemometrics
dc.subjectEnzymes
dc.subjectNIR spectroscopy
dc.subjectPartial least squares
dc.titleArtificial intelligence approach based on near-infrared spectral data for monitoring of solid-state fermentationen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes4638952263502744[4]
unesp.author.orcid0000-0002-2285-3624[3]
unesp.author.orcid0000-0001-7236-0847[5]
unesp.author.orcid0000-0002-2800-392X[9]
unesp.author.orcid0000-0001-9378-9036[4]
unesp.departmentCiências Biológicas - FCLASpt
unesp.departmentCiências Biológicas - FCFpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000384384600004.pdf
Tamanho:
1.49 MB
Formato:
Adobe Portable Document Format
Descrição: