Fabrication of rGO/α-Fe2O3 electrodes: characterization and use in photoelectrocatalysis
Nenhuma Miniatura disponível
Data
2020-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
In the current study, the synthesis of hematite (α-Fe2O3) at different temperatures (750 and 900 °C), and reduced graphene oxide (rGO), obtained from an adaptation to the Hummers’s method, was evaluated. These materials were characterized by X-ray diffraction, Raman spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, among others. The deposition of samples on the conductive surface of tin-doped indium oxide coated glass substrate, was performed by the Layer-by-Layer technique. The films were prepared with 1- and 4-bilayers α-Fe2O3, using a cationic polyelectrolyte diallyldimethylammonium chloride (PDDA) or rGO. It was observed that the rGO/α-Fe2O3 films presented higher photocurrent and less resistivity when compared to the PDDA/α-Fe2O3 films. The largest photocurrent was obtained with the 4-bilayers rGO/α-Fe2O3 at 900 °C film, with 2.15 µA cm−2. In addition, a kinetic study for photoelectrocatalytic decolorization of the methylene blue dye under visible light was performed. The electrode that showed the greatest photoelectroactivity was the 4-bilayers rGO/α-Fe2O3 at 900 °C film, resulting in kobs = 11.90 × 10−3 min−1 and about 78% decolorization after 120 min.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Materials Science: Materials in Electronics.