Predicting ligand-free cell attachment on next-generation cellulose−chitosan hydrogels

dc.contributor.authorJohns, Marcus A.
dc.contributor.authorBae, Yongho
dc.contributor.authorGuimaraes, Francisco E. G.
dc.contributor.authorLanzoni, Evandro M. [UNESP]
dc.contributor.authorCosta, Carlos A. R.
dc.contributor.authorMurray, Paul M.
dc.contributor.authorDeneke, Christoph
dc.contributor.authorGalembeck, Fernando
dc.contributor.authorScott, Janet L.
dc.contributor.authorSharma, Ram I.
dc.contributor.institutionUniversity of Bath
dc.contributor.institutionState University of New York
dc.contributor.institutionUniversity of Saõ Paulo
dc.contributor.institutionBrazilian Center for Research in Energy and Materials (CNPEM)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionPaul Murray Catalysis Consulting Ltd.
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionQueens Building
dc.date.accessioned2018-12-11T16:52:32Z
dc.date.available2018-12-11T16:52:32Z
dc.date.issued2018-01-01
dc.description.abstractThere is a growing appreciation that engineered biointerfaces can regulate cell behaviors, or functions. Most systems aim to mimic the cell-friendly extracellular matrix environment and incorporate protein ligands; however, the understanding of how a ligand-free system can achieve this is limited. Cell scaffold materials comprised of interfused chitosan−cellulose hydrogels promote cell attachment in ligand-free systems, and we demonstrate the role of cellulose molecular weight, MW, and chitosan content and MW in controlling material properties and thus regulating cell attachment. Semi-interpenetrating network (SIPN) gels, generated from cellulose/ionic liquid/cosolvent solutions, using chitosan solutions as phase inversion solvents, were stable and obviated the need for chemical coupling. Interface properties, including surface zeta-potential, dielectric constant, surface roughness, and shear modulus, were modified by varying the chitosan degree of polymerization and solution concentration, as well as the source of cellulose, creating a family of cellulose−chitosan SIPN materials. These features, in turn, affect cell attachment onto the hydrogels and the utility of this ligand-free approach is extended by forecasting cell attachment using regression modeling to isolate the effects of individual parameters in an initially complex system. We demonstrate that increasing the charge density, and/or shear modulus, of the hydrogel results in increased cell attachment.en
dc.description.affiliationDepartment of Chemical Engineering University of Bath
dc.description.affiliationCentre for Sustainable Chemical Technologies University of Bath
dc.description.affiliationDepartment of Chemistry University of Bath
dc.description.affiliationDepartment of Pathology and Anatomical Sciences Jacobs School of Medicine and Biomedical Sciences University at Buffalo State University of New York
dc.description.affiliationPhysics Institute of Saõ Carlos University of Saõ Paulo
dc.description.affiliationBrazilian Nanotechnology National Laboratory (LNNano) Brazilian Center for Research in Energy and Materials (CNPEM)
dc.description.affiliationInstitute of Science and Technology Saõ Paulo State University (UNESP)
dc.description.affiliationPaul Murray Catalysis Consulting Ltd., 67 Hudson Close
dc.description.affiliationDepartamento de Física Aplicada Instituto de Física “Gleb Wataghin” Universidade Estadual de Campinas − UNICAMP
dc.description.affiliationDepartment of Chemistry Universidade Estadual de Campinas (UNICAMP)
dc.description.affiliationDepartment of Aerospace Engineering Queens Building, University Walk
dc.description.affiliationUnespInstitute of Science and Technology Saõ Paulo State University (UNESP)
dc.description.sponsorshipBeijing University of Chemical Technology
dc.description.sponsorshipEngineering and Physical Sciences Research Council
dc.description.sponsorshipIdBeijing University of Chemical Technology: EP/G03768X/1
dc.format.extent937-945
dc.identifierhttp://dx.doi.org/10.1021/acsomega.7b01583
dc.identifier.citationACS Omega, v. 3, n. 1, p. 937-945, 2018.
dc.identifier.doi10.1021/acsomega.7b01583
dc.identifier.issn2470-1343
dc.identifier.scopus2-s2.0-85044334613
dc.identifier.urihttp://hdl.handle.net/11449/170814
dc.language.isoeng
dc.relation.ispartofACS Omega
dc.relation.ispartofsjr0,749
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.titlePredicting ligand-free cell attachment on next-generation cellulose−chitosan hydrogelsen
dc.typeArtigo
unesp.author.orcid0000-0003-0176-8620 0000-0003-0176-8620 0000-0003-0176-8620[1]
unesp.author.orcid0000-0001-9784-0935 0000-0001-9784-0935[4]
unesp.author.orcid0000-0002-0277-5403[6]
unesp.author.orcid0000-0001-8021-2860 0000-0001-8021-2860[9]
unesp.author.orcid0000-0003-3573-8403 0000-0003-3573-8403[10]

Arquivos

Coleções