Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Stochastic optimization of GeantV code by use of genetic algorithms

dc.contributor.authorAmadio, G. [UNESP]
dc.contributor.authorApostolakis, J.
dc.contributor.authorBandieramonte, M.
dc.contributor.authorBehera, S. P.
dc.contributor.authorBrun, R.
dc.contributor.authorCanal, P.
dc.contributor.authorCarminati, F.
dc.contributor.authorCosmo, G.
dc.contributor.authorDuhem, L.
dc.contributor.authorElvira, D.
dc.contributor.authorFolger, G.
dc.contributor.authorGheata, A.
dc.contributor.authorGheata, M.
dc.contributor.authorGoulas, I.
dc.contributor.authorHariri, F.
dc.contributor.authorJun, S. Y.
dc.contributor.authorKonstantinov, D.
dc.contributor.authorKumawat, H.
dc.contributor.authorIvantchenko, V.
dc.contributor.authorLima, G.
dc.contributor.authorNikitina, T.
dc.contributor.authorNovak, M.
dc.contributor.authorPokorski, W.
dc.contributor.authorRibon, A.
dc.contributor.authorSeghal, R.
dc.contributor.authorShadura, O.
dc.contributor.authorVallecorsa, S.
dc.contributor.authorWenzel, S.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionRoute de Meyrin
dc.contributor.institutionBhabha Atomic Research Centre (BARC)
dc.contributor.institutionMS234
dc.contributor.institutionIntel Corporation
dc.contributor.institutionInstitute of Space Sciences
dc.date.accessioned2018-12-11T16:51:01Z
dc.date.available2018-12-11T16:51:01Z
dc.date.issued2017-11-23
dc.description.abstractGeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) and handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. The goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.en
dc.description.affiliationParallel Computing Center Sao Paulo State University (UNESP)
dc.description.affiliationCERN Route de Meyrin
dc.description.affiliationBhabha Atomic Research Centre (BARC)
dc.description.affiliationFermilab MS234, P.O. Box 500
dc.description.affiliationIntel Corporation
dc.description.affiliationInstitute of Space Sciences
dc.description.affiliationUnespParallel Computing Center Sao Paulo State University (UNESP)
dc.identifierhttp://dx.doi.org/10.1088/1742-6596/898/4/042026
dc.identifier.citationJournal of Physics: Conference Series, v. 898, n. 4, 2017.
dc.identifier.doi10.1088/1742-6596/898/4/042026
dc.identifier.file2-s2.0-85038431473.pdf
dc.identifier.issn1742-6596
dc.identifier.issn1742-6588
dc.identifier.scopus2-s2.0-85038431473
dc.identifier.urihttp://hdl.handle.net/11449/170484
dc.language.isoeng
dc.relation.ispartofJournal of Physics: Conference Series
dc.relation.ispartofsjr0,241
dc.relation.ispartofsjr0,241
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.titleStochastic optimization of GeantV code by use of genetic algorithmsen
dc.typeTrabalho apresentado em evento

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85038431473.pdf
Tamanho:
503.3 KB
Formato:
Adobe Portable Document Format
Descrição:

Coleções