Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Zero-Hopf Bifurcations in Three-Dimensional Chaotic Systems with One Stable Equilibrium

dc.contributor.authorLlibre, Jaume
dc.contributor.authorMessias, Marcelo [UNESP]
dc.contributor.authorDe Carvalho Reinol, Alisson
dc.contributor.institutionUniversitat Autònoma de Barcelona - UAB
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Tecnológica Federal Do Paraná - UTFPR
dc.date.accessioned2021-06-25T10:44:05Z
dc.date.available2021-06-25T10:44:05Z
dc.date.issued2020-10-01
dc.description.abstractIn [Molaie et al., 2013] the authors provided the expressions of 23 quadratic differential systems in R3 with the unusual feature of having chaotic dynamics coexisting with one stable equilibrium point. In this paper, we consider 23 classes of quadratic differential systems in R3 depending on a real parameter a, which, for a = 1, coincide with the differential systems given by [Molaie et al., 2013]. We study the dynamics and bifurcations of these classes of differential systems by varying the parameter value a. We prove that, for a = 0, all the 23 considered systems have a nonisolated zero-Hopf equilibrium point located at the origin. By using the averaging theory of first order, we prove that a zero-Hopf bifurcation takes place at this point for a = 0, which leads to the creation of three periodic orbits bifurcating from it for a > 0 small enough: an unstable one and a pair of saddle type periodic orbits, that is, periodic orbits with a stable and an unstable manifold. Furthermore, we numerically show that the hidden chaotic attractors which exist for these systems when a = 1 are obtained by period-doubling route to chaos.en
dc.description.affiliationDepartament de Matemàtiques Universitat Autònoma de Barcelona - UAB
dc.description.affiliationDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista - UNESP
dc.description.affiliationDepartamento Acadêmico de Matemática Universidade Tecnológica Federal Do Paraná - UTFPR
dc.description.affiliationUnespDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista - UNESP
dc.identifierhttp://dx.doi.org/10.1142/S0218127420501898
dc.identifier.citationInternational Journal of Bifurcation and Chaos, v. 30, n. 13, 2020.
dc.identifier.doi10.1142/S0218127420501898
dc.identifier.issn0218-1274
dc.identifier.scopus2-s2.0-85095712518
dc.identifier.urihttp://hdl.handle.net/11449/206803
dc.language.isoeng
dc.relation.ispartofInternational Journal of Bifurcation and Chaos
dc.sourceScopus
dc.subjecthidden chaotic attractors
dc.subjectperiod-doubling route to chaos
dc.subjectperiodic orbits
dc.subjectZero-Hopf bifurcation
dc.titleZero-Hopf Bifurcations in Three-Dimensional Chaotic Systems with One Stable Equilibriumen
dc.typeArtigo
unesp.departmentMatemática e Computação - FCTpt

Arquivos