Optimizing Feature Selection through Binary Charged System Search

Nenhuma Miniatura disponível

Data

2013-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Springer

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Feature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be inviable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the Charged System Search (CSS), which has never been applied to this context so far. The wrapper approach combines the power of exploration of CSS together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in four public datasets have demonstrated the validity of the proposed approach can outperform some well-known swarm-based techniques.

Descrição

Idioma

Inglês

Como citar

Computer Analysis Of Images And Patterns, Pt I. Berlin: Springer-verlag Berlin, v. 8047, p. 377-384, 2013.

Itens relacionados