Optimizing Feature Selection through Binary Charged System Search

dc.contributor.authorRodrigues, Douglas [UNESP]
dc.contributor.authorPereira, Luis A. M. [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorRamos, Caio C. O.
dc.contributor.authorSouza, Andre N.
dc.contributor.authorPapa, Luciene P.
dc.contributor.authorWilson, R.
dc.contributor.authorHancock, E.
dc.contributor.authorBors, A.
dc.contributor.authorSmith, W.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Estdual Paulista
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionFac Sudoeste Paulista
dc.date.accessioned2020-12-10T19:32:13Z
dc.date.available2020-12-10T19:32:13Z
dc.date.issued2013-01-01
dc.description.abstractFeature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be inviable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the Charged System Search (CSS), which has never been applied to this context so far. The wrapper approach combines the power of exploration of CSS together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in four public datasets have demonstrated the validity of the proposed approach can outperform some well-known swarm-based techniques.en
dc.description.affiliationUNESP Univ Estadual Paulista, Dept Comp, Bauru, Brazil
dc.description.affiliationUniv Estdual Paulista, Dept Elect Engn, Bauru, Brazil
dc.description.affiliationUniv Sao Paulo, Polytech Sch, Sao Paulo, Brazil
dc.description.affiliationFac Sudoeste Paulista, Dept Hlth, Avare, Brazil
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Dept Comp, Bauru, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2009/16206-1
dc.description.sponsorshipIdFAPESP: 2011/14094-1
dc.description.sponsorshipIdFAPESP: 2012/14158-2
dc.description.sponsorshipIdCNPq: 303182/2011-3
dc.format.extent377-384
dc.identifier.citationComputer Analysis Of Images And Patterns, Pt I. Berlin: Springer-verlag Berlin, v. 8047, p. 377-384, 2013.
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/11449/196067
dc.identifier.wosWOS:000345516500045
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofComputer Analysis Of Images And Patterns, Pt I
dc.sourceWeb of Science
dc.subjectFeature Felection
dc.subjectCharged System Search
dc.subjectEvolutionary Optimization
dc.titleOptimizing Feature Selection through Binary Charged System Searchen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos